该公司设计了一个新的移动测试分离器单元。三相或四相测试分离器是一种仪器的压力容器,旨在有效地将良好的废水分离为油,天然气和水,如果四相分离器,用于陆上和近海井测试。测试分离器可以用作独立单位或与电涌箱结合使用,从而降低了对高质量流量测量的分离过程的依赖性。钻孔测试SEP栅极,该分离器单位必须由标称直径为3“ X4” / DN80 X DN100的安全阀保护。该分离器是一种用于分离和测量少量石油和天然气的容器。通过将流量从生产分离器转移到测试分离器来定期测试,该分离器确定井中的石油,天然气和水的生产速率。POSV可保护分离器容器免受某些操作条件下可能发生的过压。这些条件范围从阀门故障,例如检查阀,向工厂发射。
摘要:现代信息和通信技术(例如虚拟和混合现实)的使用提供了控制和监视物联网设备的新选择。例如,头部安装显示器(HMD)已成为提高用户生产力和享受的工具。这种开发也与计算机技术的最新进步以及该技术价格下降有关:HMD现在更具功能性,同时在市场上也更广泛地使用。本文提供了两轮机器人汽车,可以使用HMD实时远程控制。遥控器是在统一3D的帮助下在虚拟现实中完成的。开源游戏引擎减少了成本和开发时间。有用于方向盘,变速箱,屏幕和停止按钮的单独对象。控制器和用户的手都可以用作输入操纵器。Oculus耳机的外部摄像头使用手识别来实现此功能。Raspberry Pi 4具有三个主要功能:首先是用GPIO引脚控制直流电动机,其次是将视频流从相机发送到HMD,第三个是接受HMD的控制信号并执行它们。虚拟现实耳机和远程操作车辆(ROV)的数据传输是通过服务器客户通信完成的。Raspberry扮演服务器的角色,该角色写在Python编程语言的烧瓶框架上。该服务器使用异步原理和OPENCV库来使用图像。GPIO引脚由服务器控制,并且也接收请求。VR耳机是客户,该客户端是在Unity Game Engine上写的。用户执行任何操作并实时将视频流传输到屏幕时,设备与服务器进行交互。输入系统的配置是在官方Oculus软件开发套件的帮助下完成的。
摘要:本研究提出了一种适用于消费者住宅区的混合交流/直流微电网,该微电网采用可再生能源,以满足需求。目前,发电和消费经历了重大转变。其中一个趋势是将微电网整合到配电网中,其特点是可再生能源资源的高渗透率以及并联运行。可以采用传统的下垂控制来获得混合交流/直流微电网并联逆变器之间准确的稳态平均有功功率分配。假设具有相同下垂增益的相同逆变器会有相似的瞬态平均功率响应,并且单元之间不会有环流。然而,瞬时功率可能会受到不同线路阻抗的很大影响,从而导致逆变器之间流动的环流功率发生变化,尤其是在负载变化等意外干扰期间。如果该功率被逆变器吸收,则可能导致直流母线电压突然升高并使逆变器跳闸,进而导致整个混合微电网的性能下降。当混合发电机充当单向电源时,问题将进一步恶化。在这项研究工作中,我们提出了一种适用于混合微电网的新型分布式协调控制,该系统可应用于包括可变负载和混合能源的并网模式和孤岛模式。此外,为了选择最有效的控制器方案,设计了参与因子分析以约束直流母线电压并降低循环功率。此外,对于光伏电站和风力涡轮机,都使用了最大功率点跟踪 (MPPT) 技术,以便在环境条件存在差异时从混合电力系统中提取最大功率。最后,通过模拟结果确认了引入的混合微电网策略在不同模式下的可行性和有效性。
我们为我们60多年的传统感到自豪,作为卫生维护行业的领导者。ncl®在很久以来在市场上流行之前就以可持续的,环境负责的清洁系统领先。今天,我们与绿色密封™,美国绿色建筑委员会和健康学校运动等第三方组织合作,以鼓励使用程序和产品减少潜在的环境和健康危害。通过我们的密集培训计划,两者都在我们的8300平方英尺。ft。我们在宾夕法尼亚州费城和在线(在线NCL®大学)的培训中心,我们与我们快速变化的行业保持同步。此外,我们的工厂培训的区域销售代表团队在本地研讨会上提供援助,以及有关使用NCL®产品的正确技术的动手培训。从洗手间到教室,工业工厂或医疗保健,NCL®具有专业知识,可帮助您更轻松地清洁设施。
菲律宾拥有数千个离网岛屿,这些岛屿距离大陆太远,因此接入主电网的成本很高。这些岛屿通常由柴油发电机供电,随着燃料成本不断上涨,这些发电机将需要更多的补贴。混合可再生能源系统 (HRES) 是一种替代能源,对燃料和发电成本的依赖较低。在这项工作中,评估了在菲律宾不同大小的离网岛屿部署 HRES 的财务可持续性。巴通贡岛、拉皮尼甘岛、巴拉巴克岛和锡布延岛被选为案例研究,因为它们的峰值电力需求从巴通贡岛的 4.4 千瓦到锡布延岛的 3.2 兆瓦不等,占该国离网岛屿的很大一部分。这些岛屿上的 HRES 由太阳能光伏、风力涡轮机、锂离子电池和柴油发电机组成,采用内部能源系统建模工具岛屿系统 LCOE 最小算法 (ISLA) 进行建模。然后,在不同电价下计算净现值、内部收益率 (IRR) 和回收期 (PBP) 等盈利指标。大锡布延岛在 0.2 美元/千瓦时电价下已经盈利,与大陆电价相当,这表明可以取消大岛的补贴。11% 的低 IRR 和 13 年的 PBP 可能对私人投资者没有吸引力,但可以通过提高电价来缓解这一问题。然而,其他岛屿仍将需要补贴,因为小巴东贡岛的盈利能力仅为大陆电价的 1.5 倍。这项工作通过提供许多技术经济研究中缺乏的财务见解来鼓励私营部门的参与。此外,这项研究还让公共部门了解到在小型离网岛屿提供能源接入的补贴的必要性。
本研究的目的是分析电池储能系统 (BESS) 如何支持包含水力发电厂的孤岛微电网的频率和电压稳定性。对位于瑞典的两个不同的微电网进行了评估。在 PowerFactory 工具中进行建模和动态模拟。结果表明,使用 BESS 可以改善频率和电压控制。但是,在允许的 ± 1 Hz 限制下,并非所有包括 BESS 的模拟场景都符合要求。BESS 和发电机容量之间的巨大差异可能是造成这种情况的原因。通过划分较大的负载以获得较小的负载,可以减少频率偏差。此外,通过根据孤岛模式操作调整系统 PID 参数,可以实现更快的调节。该系统根据主从控制策略运行,水力发电是具有电压控制的主单元,BESS 是具有 PQ 控制的从单元。运行孤岛微电网的能力可以确保向居民和社会的重要功能提供电力。通过利用 BESS 提高电力稳定性,间接减少了 CO 2 的排放。由于 BESS 的成本预计将迅速下降,因此它们将在世界各地得到利用。
摘要 孤岛式农村微电网需要持续的资源监控。需求响应方案在管理负荷方面表现出色。然而,城市需求响应方案配备了市场价格和高峰时段惩罚来控制可延迟负荷。在农村微电网中,通常使用不属于可延迟负荷类别的常规负荷,例如风扇、灯和水泵。此外,随时使用常规负荷的完全自由、缺乏意识以及没有存储储备信息使得负荷管理任务更加复杂。在本研究中,为常规运行负荷设计了全自动两层需求响应方案。第一层控制是负荷模式控制。运行模式由电池的充电状态 (SoC) 决定。在第二层中,根据消费者的日常活动、SoC 和环境温度作为成员函数设计模糊控制器。结果根据消费者的舒适度和 SoC 的可用性进行评估。自动需求响应中的负载运行与实际常规运行保持一致,符合消费者的期望,偏差为 5% 至 7%。与相关研究相比,所有运行模式下的 SoC 水平均保持高 15%,重载运行高 13.5%。
我在此提交一篇由 Timothy R. Clark 撰写的论文,题为“评估在国家空域系统中运行的遥控飞机的机载监视和通信双向数据链”。我已检查了该论文的最终电子版形式和内容,并建议将其接受为部分满足理学硕士学位(主修航空系统)的要求。
1不列颠哥伦比亚大学的物理与天文学系,不列颠哥伦比亚大学,不列颠哥伦比亚省V6T 1Z1,加拿大2 Triumf,不列颠哥伦比亚省V6T 2A3,加拿大3,加拿大3物理系,多伦多大学,多伦多大学,多伦多大学,多伦多,安大略省M5S 1A77,加拿大4 Deparivefiísicadefísicicicatehoma,deririririric,pecansica tehoma,deririririricriririric,Iddad nord de.马德里,西班牙5个InstitutodefísicaTeóricaUam-CSIC,校园,坎多布兰科校园,28049,马德里,西班牙6号,6迪勒姆大学,达勒姆大学,达勒姆大学,达勒姆DH1 3LE,英国7 SLAC国家加速器实验室 /卡夫利粒子粒子和自然公园,北科学杂志, 360 Huntington Avenue,马萨诸塞州波士顿,美国92115,美国9太平洋西北国家实验室,华盛顿州里奇兰市,华盛顿99352,美国10物理学和天文学系,以及米切尔基本物理和天文学研究所美国科罗拉多州丹佛大学物理学,美国13美国13,美国斯坦福大学,加利福尼亚州斯坦福大学物理系94305,美国14号南部卫理公会大学,德克萨斯州达拉斯75275,美国15美国加利福尼亚大学,加利福尼亚州伯克利大学教育学院。 JATNI 752050,印度17号物理与天文学系西北大学,伊利诺伊州埃文斯顿,伊利诺伊州60208-3112,美国18号,南达科他州矿业与技术学院,南达科他州拉皮德城57701,美国19号9,1039区域道24号,萨德伯里,安大略省P3Y 1N2,加拿大20物理学和天文学学院,明尼苏达州明尼苏达州明尼苏达州55455,美国21 d。 Karlsruhe技术研究所(KIT),76344德国Eggenstein-Leopoldshafen,德国23Institutfür实验性菲西克,汉堡大学,22761汉堡,德国,德国24年汉堡,24物理学系 19282, United Arab Emirates 26 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA 27 Laurentian University, Department of Physics, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada 28 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 29 Department of Electrical Engineering, University of科罗拉多州丹佛,丹佛,科罗拉多州80217,美国30,南达科他大学,南达科他大学,南达科他州57069,美国31劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国32,美国32,美国圣克拉拉大学,加利福尼亚州圣克拉拉,
祭坛,I。Buckanan,R。Bunker,B。Calkins,R。Calkins,R。Cameron,C。Carthreat,D。G。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J. K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。 街,H。Sun。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J.K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。街,H。Sun。街,H。Sun。Young,T。C. Yu,B。Zatschler,S。Zatschler,A。Zaytsev,E。Zhang,L。Zheng,A。Zuniga和M. J. Zurowski