激光引起的周期性表面结构(LIPS),尤其是表现出高空间频率LIPS(HSFL)的表面结构,由于其快速纳米结构的产生能力,因此在精确制造中具有至高无上的意义。但是,对于Au,在微纳米应用中广泛使用的材料,HSFL的表现仍然难以捉摸。这项研究成功地制造了HSFL,其周期性为100 nm,利用了520 nm飞秒激光(FS-LASER)引起的结晶。启动HSFL形成的基本元素在于用无序的晶格结构与FS激光诱导的结晶相结合。无序的晶格结构促进了电子在热传输中偶联的占优势,从而抑制了热电子扩散效果 - 这是HSFL形成的先决条件。结晶控制了“非晶Au”的转换为典型的Au的结晶状态,同时还可以使周期乘法取决于FS-LASER脉冲的数量。它最终促进了在晶体AU上形成100 nm HSFL的形成。此外,通过在单层石墨烯中的周期性纳米图案(即HSFL)中的应用中,Au HSFL的多功能性得到了证明。因此,除了揭示了基于金属HSFL形成的新型物理机制外,Au HSFL的成就无疑有望在纳米电子和纳米光子学方面取得重大进步。
我们推出《生物医学光学快报》光学与大脑专题,该专题将于 2023 年 4 月 24 日至 27 日在加拿大温哥华举行的 Optica 生物光子学大会:生命科学中的光学部分举行。这次会议是讨论现有和新兴技术以及未来方向的论坛,以揭示健康和患病大脑的新亮点。光学提供了一个独特的工具包,用于从微观到宏观尺度对活体和完整大脑进行多尺度成像。同时,基因标记策略为图像神经功能提供了光学对比,而光遗传学允许用光控制细胞功能。为了涵盖实现这些不同目标所需的专业知识,会议汇集了工程师、光学和医学科学家、生物学家、化学家和医生。本期特刊中的文章代表了参与《光学与大脑》的社区的广泛范围。漫射光学器件可以利用近红外光探测人体组织中厘米深处,从而无创地到达活体大脑。一篇评论文章 [ 1 ] 强调了使用近红外光谱 (NIRS) 的非侵入性光学成像方法在成人和新生儿中测量氧化细胞色素-c-氧化酶。另一项使用传统血红蛋白 NIRS 的研究 [ 2 ] 表明,虚拟现实游戏任务可以比简单的抓握动作更好地调节大脑功能网络。这一发现对于中风后手部麻痹患者恢复抓握能力具有重要意义。光学方法还可以阐明脑组织的结构和生化组成。在癌症诊断中,另一项研究 [ 3 ] 调查了激光诱导击穿光谱 (LIBS) 和电火花辅助激光诱导击穿光谱 (SA-LIBS) 在区分胶质母细胞瘤 (GBM) 和少突胶质细胞瘤 (OG) 与非肿瘤浸润脑组织中的应用。作者展示了 SA-LIBS 在区分肿瘤组织以及多参数表征方面的优势。在另一项工作 [ 4 ] 中,展示了一种用于立体定向神经外科无标记成像的双光子微内窥镜。该装置足够小,可以放入手术套管中。另一项工作 [ 5 ] 使用连续切片偏振敏感光学相干断层扫描展示了人类脑组织块中髓鞘的无标记成像
SEMESTER – B1(Common to All streams) L T P Credit HU101 Communicative English 2 1 0 3 PH102 Physics-I 2 1 0 3 CH103 Chemistry-I 2 1 0 3 MA104 Engineering Mathematics-I 2 1 0 3 EE105 Electrical Technology 2 1 0 3 CS106 Computer Programming and Data Structure 2 1 0 3 HU107 Language Lab 0 0 3 2 PH108 Physics-I Lab 0 0 3 2 CH109 Chemistry-I Lab 0 0 3 2 EE110 Electrical Technology Lab 0 0 3 2 CS111 Computer Lab 0 0 3 2 12 6 15 28 SEMESTER – B2 (Common to All streams) HU201 Sociology 2 1 0 3 PH202 Physics-II 2 1 0 3 CH203 Chemistry-II 2 1 0 3 MA204 Engineering Mathematics-II 2 1 0 3 ET205 Basic Electronics 2 1 0 3 ME206 Engineering Mechanics 2 1 0 3 PH207 Physics-II Lab 0 0 3 2 CH208 Chemistry-II Lab 0 0 3 2 ET209 Electrical Technology Lab 0 0 3 2 ME210 Workshop Practice 0 0 3 2 ME211 Engineering Drawing 0 0 3 2 12 6 15 28 SEMESTER – B3 B231 Engineering Mathematics-III 2 1 0 3 B232 Foundation of Applied Optics & Photonics 3 0 0 3 B233 Photonic Materials 3 0 0 3 B234网络理论2 1 0 3 B235模拟和数字电子电路3 0 0 3 B231P辐射仪和光度法实验室0 0 6 4 B232P计算机应用程序实验室0 1 3 3 3 3
最近关于欧盟长期竞争力的通报 1 “将 Web 4.0 视为迈向万物无缝互联世界的突破性技术转型。欧洲理事会呼吁欧盟保持 Web 4.0 发展的前沿。虚拟世界是向 Web 4.0 转型的重要组成部分。它们已经为许多社会、工业和公共部门开辟了广泛的机会。虚拟世界的概念已经存在了几十年,但由于技术的快速进步和连接基础设施的改善,它们现在在技术和经济上都变得可行。虚拟世界将成为欧洲数字十年的一个重要方面,并将影响人们的生活、工作、创造和共享内容的方式,以及企业的运营、创新、生产和与客户互动的方式。” 委员会的通报名为“欧盟关于 Web 4.0 和虚拟世界的倡议:下一次技术转型的先机”,阐述了虚拟世界和 Web 4.0 2 的战略和拟议行动。
Lowe,Christopher John Orcid:https://orcid.org/0000-0000-0003-2964-7337,McGrath,Ciara Norah Orcid:https://orcid..org/0000-0002-7540-740-7476,hancock,Hancock,Hancock,hancven ofcid: https://orcid.org/0000-0001-5659-6964,Davenport,Ian orcid:https://orcid.org/000000-0000-0002-3772-6046,Todd,Todd,Todd,Todd,Stephen,Stephen,Stephen,Hansen,Hannes orcid:Johannes orcid:hannes orcid:000 33 33 33 33 33 33 33 33 33 33-33-33 33 33 33 33 33-/33-33-/33-33-/33/33/33/33/33/33 ,Woodhouse,Iain,Norrie,Callum Orcid:https://orcid.org/000000-0002-9942-6129和MACDONALD,MALCOLM ORCID:https://orcid.org/0000-0000-0000-0003-4499-4499-4281(2024)空间连续的全球覆盖范围。Acta Astronautica,214。pp。809-816。
计划委员会:罗斯 - 霍尔曼理工学院(美国)霍斯辛·阿利萨法伊(Hossein Alisafaee); John P. Deegan,Rochester Precision Optics,LLC(美国);里克·菲茨帕特里克(Rick Fitzpatrick),挤满了有限责任公司(美国); Marcel Friedrichs,Fraunhofer-InstitutfürProduktionStechnologieIPT(德国); Ulf Geyer,Auer Lighting GmbH(德国); Panasonic生产工程有限公司Koji Handa(美国); Sai K. Kode,Micro-Lam,Inc。(美国); Oscar M. Lechuga,Fresnel Technologies Inc.(美国); Chris Morgan,Moore Nanotechnology Systems,LLC(美国); Panasonic生产工程有限公司Tomofumi Morishita(日本); J. David Musgraves,Musgraves Consulting(美国);吉姆·奥尔森(Jim Olson),Syntec Optics(美国);迈克尔·舒布(Michael P. Schaub),元(美国); Ulrike Schulz,Fraunhofer-InstitutfürAngewandteoptik und feinmechanik iof(德国);汉密尔顿·谢泼德三世(Hamilton Shepard III),Waymo,LLC(美国); Jan-Helge Staasmeyer,Leica Camera AG(德国)
成像 • 3D 成像 • 遥感、医学、生物学、地球物理、防御等领域的应用 • 生物和分子成像 • 编码孔径成像 • 计算成像 • 计算效率高的成像算法 • 与非常规成像系统实施相关的实验结果或硬件 • 使用人工智能的成像方法,例如机器学习和深度学习。 • 主动或被动照明成像 • 分集测量成像,包括相位分集、偏振分集、孔径分集、波长分集等 • 像平面测量、瞳孔平面测量或两者成像 • 合成孔径激光雷达和逆合成孔径激光雷达系统成像 • 湍流、折射或高散射介质成像或通过湍流、折射或高散射介质成像 • 使用超快脉冲成像 • 使用非常规光学设计成像 • 图像恢复和合成的信息论极限
基于复杂算法的密码学今天授予信息的安全性和主权。量子计算的兴起将挑战我们最先进的基于数学的加密技术。我们基于纠缠的光子源开发和提供量子密钥分布(QKD)系统,以通过量子技术解决量子挑战。这允许基于物理定律实施网络安全解决方案。量子光学元件jena涵盖了整个过程链,从纠缠的光子源,量子状态分析仪到量子密钥生成和 - 管理系统。我们为客户和合作伙伴启用量子增加价值。作为一家初创企业,我们提供了多种发展机会,平坦的层次结构和具有挑战性的开发项目。
• 量子光简介:量化电磁场、非线性量子光学(自发参量下转换和四波混频)用于产生压缩态和纠缠光子、正交算子、同差和异差检测。