摘要:工业控制系统在当今的制造系统中发挥着核心作用。在保持和提高生产能力和生产力的同时,生产系统的复杂性也随之大幅增加,并朝着更加灵活和可持续的方向发展。为了应对这些挑战,需要先进的控制算法和进一步的发展。近年来,基于人工智能 (AI) 方法的发展引起了研究和行业对未来工业控制系统的极大关注和相关性。基于人工智能的方法越来越多地被应用于各种工业控制系统层面,从单个自动化设备到复杂机器的实时控制、生产过程和整个工厂的监督和优化。因此,人工智能解决方案被应用于不同的工业控制应用,从传感器融合方法到新型模型预测控制技术,从自优化机器到协作机器人,从工厂自适应自动化系统到生产监督控制系统。本篇展望论文的目的是概述人工智能方法在不同层次上对工业控制系统的新应用,以提高生产系统的自学能力、整体性能、相关流程和产品质量、资源的最佳利用和工业系统安全性以及对不同边界条件和生产要求的适应能力。最后,讨论了主要的未决挑战和未来前景。
摘要 - 本文使用传输矩阵方法对分布式反馈(DFB)腔模型进行了深入研究,以优化光子应用中的光学性能。分析了各种参数,包括有效的折射率,光栅长度和空腔长度,以观察它们对DFB腔的反射率和透射率的影响。数值模拟,以建模光与腔内周期性变化的相互作用。结果显示最佳配置,可以增强DFB腔中的波长选择性。这项研究有助于设计有效的光子设备,特别是在激光器和光学滤镜中。模拟为指导高性能DFB激光器的发展提供了重要的见解。
结果和讨论:结果表明,随着温度与最佳生长条件紧密对齐,11月1日的播种产生了1446 kg ha -1的最高种子产量。藜麦的干旱耐受性意味着灌溉能够维持农作物的生长和产量。虽然农作物对更高的n剂量做出了积极反应,但研究发现,考虑到浅层底层土壤条件和潜在的住宿问题,使用100 kg n ha -1是最佳的。此外,水生产率,蛋白质和皂苷含量反映了与种子产量相似的趋势。结果表明,早期播种,40%ET C和100 kg N HA -1的灌溉产生的种子产量为1446 kg ha -1,表现出较高的碳效率和可持续性,同时最小化n 2 O发射。但是,这些策略应针对特定的生态条件量身定制。总体而言,该发现证实了印度2600万公顷浅层玄武岩穆拉姆土壤中藜麦的耕种潜力,在那里其他作物可能不会在经济上繁衍生息。
摘要这项研究的目的是探索各种方法如何影响反向供应链,同时考虑到收集和拆卸寿命终止产品所涉及的运营复杂性。主要问题是需要有效的卡车路由以及当不可用的优化模型时出现的昂贵,耗时的手动拆卸程序。部分最小二乘结构方程建模(PLS-SEM)是用于研究供应链关系,供应链敏捷性和反向供应链策略之间相互作用的研究技术。这项研究的样本包括351位受访者。结果表明,可持续性与运营绩效以及敏捷性与可持续性之间存在牢固和积极的关系。结果表明,组织策略,反向供应关系,反向供应敏捷性和反向供应链密切相关。在伊拉克的制造业中,这项研究可以为供应链管理策略提供有用的建议,因为它是研究联系,组织战略,供应链敏捷性和反向供应链及其敏捷性以及供应链链接对关系的中介作用的研究。
n eupraxia的高级加速器高质量束激光注射器(LPI)[1] IJCLAB [2]:10 Hz 200Mev LPI测试设施的准备技术设计阶段和未来的高梯度加速器R&D R&D
本综述总结了对植物育种中定量性状的仿真研究的发现,并将这些见解转化为实际方案。作为农业生产力面临着越来越多的挑战,植物育种对于解决这些问题至关重要。模拟使用数学模型来复制生物条件,桥接理论和实践,通过验证假设早期并优化遗传增益和资源使用。虽然策略可以提高特质价值,但它们会降低遗传多样性,从而结合方法。研究强调了将策略与性状遗传力和选择时间保持一致的重要性,并保持遗传多样性,同时考虑基因型 - 环境相互作用,以避免早期选择中的偏见。在精确的标记放置时,使用标记会加速繁殖周期,前景和背景选择是平衡的,并且有效地管理了QTL。基因组选择通过缩短育种周期和改善父级的选择来增加遗传增长,尤其是对于低遗传力性状和复杂的遗传结构而言。定期更新培训集至关重要,无论遗传结构如何。贝叶斯方法在较少的基因和早期的繁殖周期中表现良好,而BLUP对于具有许多QTL的性状更为强大,而RR-Blup在不同条件下证明了灵活性。有明确的目标和足够的种质可用时,较大的人群会带来更大的收益。准确性在几代人中下降,受到遗传结构和人口规模的影响。对于低遗传力性状,多特征分析提高了准确性,尤其是与高遗传力性状相关时。更新包括表现最佳的候选人,但保存可变性可提高提高和准确性。低密度基因分型和插补为高密度基因分型提供具有成本效益的替代方法,从而获得了可比的结果。靶向种群优化遗传关系,进一步提高准确性和繁殖结果。评估基因组选择揭示了短期收益与长期潜力和快速循环基因组计划之间的平衡。多样化的方法保留了稀有等位基因,实现了显着的收益并保持多样性,并突出了在优化繁殖成功方面的权衡。
估计此次信息收集的公共报告负担平均每份回应需要 1 小时,其中包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将关于此负担估计或此信息收集的任何其他方面的评论(包括减少此负担的建议)发送至华盛顿总部服务部、信息运营和报告理事会,地址:1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,以及管理和预算办公室、文书工作减少项目 (0704-0188) Washington DC 20503。1.仅供机构使用(留空) 2.报告日期 2006 年 12 月 3.报告类型和涵盖日期 硕士论文
摘要 - 我们解决了落后的(BTM)分布式能源(DER)的合法化,包括净能量测定(NEM)框架下的可易加需求,可再生分布生成(DG)和电池能量存储系统(BESS),并具有需求费用。我们将问题提出为随机动态程序,该程序说明了可再生生成的不确定性和操作盈余最大化。我们的理论分析表明,最佳策略遵循阈值结构。最后,我们表明,即使利用这种阈值结构的简单算法在仿真中都表现良好,强调了其在开发近乎最佳的算法中的重要性。这些发现为在复杂的关税结构下实施制造商能源管理系统提供了关键见解。索引术语 - 电源储存系统,分布式能源,动态编程,能源管理系统,灵活的需求,马尔可夫决策过程,净能量计量。