用于卫星和太空探测器的陀螺仪: • Astrix 系列:用于军事、科学和电信应用的高性能空间光纤陀螺仪,与空中客车防务与航天公司合作开发了 20 多年 • Astrix NS:用于新空间的新型、紧凑且具有竞争力的陀螺仪 发射器的惯性导航系统: • 用于阿丽亚娜发射器的安全惯性导航系统。自 2020 年以来已在飞行中通过认证 用于空间应用的 LiNbO 3 光调制器 • 用于从卫星到卫星、从太空到地面的激光通信终端的幅度和相位 LiNbO 3 调制器 • 用于激光腔稳定的相位 LiNbO 3 调制器 空间级光纤 • 具有多种涂层选择的 SM 和 PM 辐射硬化光纤 • 用于光源和放大器的掺铒和掺铒/镱光纤 • 定制设计的空间级光纤以及光纤光源和放大器
产品规格 主动 被动 美国国际单位制 美国国际单位制 机械 外壳尺寸 33 英寸高 x Ø18 英寸 838 毫米 x Ø457 毫米 10 英寸高 x Ø18 英寸 254 毫米 x Ø457 毫米 质量(包括电缆) <50 磅 <22.7 千克 <25 磅 <11.3 千克 轴向捕获距离 6 英寸 角度捕获错位公差 俯仰/偏航 = ±5 度,滚动 = ±5 度 横向错位公差 ±2 英寸 线性接触速度公差 3 厘米/秒 捕获时间 <10 秒 捕获和锁存时间 <300 秒 注意:此数据仅供参考,可能随时更改。请联系 Sierra Space 获取设计数据。
在这项工作中,我们分享了我们对未来的愿景:可重复使用的轨道服务飞行器(OSV)将改变太空经济并发展新兴的在轨服务行业。可重复使用的 OSV 充当卫星的“中转航班”,提供多个在轨目的地,类似于航空业。开发可靠的可重复使用的 OSV 将扩大单颗卫星的效用,允许更换平面、逃逸轨迹、多轨道任务等。OSV 进一步实现有效载荷升级、卫星星座维护、使用寿命结束时脱轨以及轨道碎片清除。这些附加功能将可重复使用的 OSV 与单轨道任务替代方案区分开来,并增加了在轨经济机会。一旦在低地球轨道建立了 OSV 网络,就可以有效地安排会合和转移,以最大限度地减少连接之间的在轨等待时间。
用于卫星和太空探测器的陀螺仪: • Astrix 系列:用于军事、科学和电信应用的高性能空间光纤陀螺仪,与空中客车防务与航天公司合作开发了 20 多年 • Astrix NS:一款新型、紧凑且具有竞争力的空间陀螺仪 用于发射器的惯性导航系统: • 与赛峰数据系统合作生产的用于阿丽亚娜发射器的安全惯性导航系统 用于空间应用的 LiNbO 3 光调制器 • 用于卫星到卫星、太空到地面的激光通信终端的幅度和相位 LiNbO 3 调制器 • 用于激光腔稳定的相位 LiNbO 3 调制器 空间级光纤 • 具有多种涂层选择的 SM 和 PM 辐射硬化光纤 • 用于光源和放大器的掺铒和掺铒/镱光纤 • 定制设计的空间级光纤以及光纤光源和放大器
电流流动的附加导体。在2000年代提出了通过将自旋式电子注射到FM中,提出了通过电流来操纵电流的磁化的想法(图1C)[2]。注入的旋转与磁化相互作用,最终,传出的电子将获取FM的自旋偏振。由于总角动量是保守的,因此进出状态的旋转的差异意味着磁化强度必须经历扭矩作为背部动作。相应的过程称为自旋扭矩,它可以通过电流进行有效的磁化操作。GMR和自旋扭矩是旋转记忆设备(例如磁随机存储器(MRAM))背后的关键机制,它可以用作内存和神经形态计算设备以及存储式内存的可靠硬件。
1. 引言 随着太空环境的使用和商业化程度不断提高,以及太空发射的便利性不断提高,地球轨道上的活跃卫星和轨道碎片数量也不断增加。轨道碎片是指在地球轨道或重新进入地球大气层的人造非功能性物体(包括碎片和元素);自太空探索初期以来,碎片的数量远远超过在轨运行的航天器 [1]。2022 年 7 月,美国空间监视网络的太空物体目录(仅考虑直径大于 5 厘米的碎片)报告了 8,943 艘航天器和 16,393 块轨道碎片。巨型星座(可能包括数万颗联网卫星的舰队)的计划部署标志着卫星运行范式的转变,并将加速已经高度拥挤的低地球轨道 (LEO) 的密集化。随着卫星轨道上越来越拥挤的活跃航天器和轨道碎片,发生碰撞的风险也在增加。碎裂事件可能会产生更多的碎片,有可能导致凯斯勒综合症,这是一种假设的最坏情况(由唐纳德·凯斯勒博士于 1978 年首次提出),即一系列连锁碰撞及其产生的碎片云可能会使地球轨道无法使用 [2]。凯斯勒事件的直接后果可能是深远的,使电信、宽带互联网和天气预报等地面服务陷入瘫痪,同时也妨碍未来的太空利用或探索 [3]。尽管人们越来越意识到轨道碎片带来的风险,但由于监管和政策环境落后于太空的快速发展,减轻和防止碎片的努力受到限制。国际协议和国家立法旨在确保在人烟稀少的太空环境中安全运行,而这种环境与当今拥挤的轨道领域越来越不相似。 1967 年《外层空间条约》和随后的 1976 年《责任公约》构成了国际空间法的基础,确认了空间物体的所有权,但并未直接涉及轨道碎片。根据这些规则,发射国对在其境内发射的物体拥有所有权,其他国家未经发射国同意不得收集这些物体 [3]。此外,发射国有责任赔偿其空间物体造成的损害。在考虑这些空间法基本原则如何适用于轨道碎片时,仍然存在不确定性:尽管大多数国家认为轨道碎片是空间物体,但《外层空间条约》和《责任公约》并未提供明确的定义,而且由于我们对大多数空间物体的跟踪和识别能力有限,在发生碰撞时识别发射国变得很复杂。如果没有监管要求或其他直接激励措施来防止轨道碎片,航天器所有者、运营商和发射提供商在遵守减少轨道碎片产生和风险的自愿准则方面进展缓慢。欧洲空间局 (ESA) 报告称,估计近地轨道上 30% 到 70% 的有效载荷(不包括载人航天)在报废时遵守脱轨准则。ESA 进一步指出,遵守碎片缓解措施的比例正在提高,但仍不足以在长期内显著降低碰撞风险 [2]。轨道碎片带来的挑战与臭氧层损耗等全球环境挑战有着内在的相似之处。司法当局和国际机构不应因为收益不确定而推迟行动,而应行使预防原则——环境法的一项长期信条——该原则建议各国采取行动解决构成长期环境威胁的环境问题,即使没有证据表明会发生危害 [4]。 《关于消耗臭氧层物质的蒙特利尔议定书》的签署和随后的实施是一个显著的例子,表明国际社会有效地动员起来,即使在科学不断发展和不确定的情况下,也致力于解决人类活动对环境造成的有害影响。2022 年 5 月,加伯和兰德发表了一篇论文,建议研究蒙特利尔
当前的太空环境似乎具有许多安全困境的特征。如果不加以控制,安全困境将造成不稳定的状况,并引发次优的军备竞赛,从而可能导致战争。人们普遍认为太空是一个以进攻为主的环境,这加剧了日益严重的轨道安全困境。这种以进攻为主的错误认识排除了可行的保障战略,迫使各国采取弄巧成拙的政策,而这些政策只会加剧太空的安全困境。本文探讨了太空攻防平衡的更微妙的现实,以及它对未来轨道大国竞争的影响。本文的结论是,各国应该采取一种对冲战略,这种战略有利于强大的防御能力和分散的太空架构,因为近乎中立的攻防平衡和无边界轨道地理环境所导致的某种形式的安全困境的持续存在。