类器官研究已成为生物医学中的一个变革性领域,重点是模仿人体器官的三维(3D)结构的体外发展。从各种类型的干细胞中得出,类器官紧密复制了人体器官结构和功能,比二维细胞培养物和动物模型具有显着优势,主要用于药物开发,组织工程和精度医学。最近的创新,包括生物制造技术的整合,已经显着提高了器官的结构复杂性和成熟度,从而扩大了其生物医学应用。器官培养的关键因素是利用细胞外基质(ECM),特别是脱细胞ECM水凝胶。这些水凝胶在器官生长和发育中有用,有效地模拟了体内环境,并支持各种器官系统的器官功能。将3D生物打印技术的集成到器官研究中标志着一种变革性的转变,这使得能够创建复杂的和CUS的结构。这篇综述表明,这些技术创新不仅彻底改变了组织工程和再生医学,而且还为药理学,疾病建模和个性化的医疗干预措施提供了巨大的影响。这些技术的综合整合为医学研究提供了一个有希望的未来,为疾病建模,药物发现和患者特异性治疗的发展铺平了道路,并标志着我们进入Preci Sion医学的新时代和个性化的医疗保健解决方案。
此预印本的版权持有人(本版本发布于2024年5月20日。; https://doi.org/10.1101/2024.05.19.594912 doi:biorxiv Preprint
COPYRIGHT © 2023 Morales Pantoja, Smirnova, Muotri, Wahlin, Kahn, Boyd, Gracias, Harris, Cohen-Karni, Caffo, Szalay, Han, Zack, Etienne-Cummings, Akwaboah, Romero, Alam El Din, Plotkin, Paulhamus, Johnson, Gilbert, Curley, Cappiello,Schwamborn,Hill,Roach,Tornero,Krall,Parri,Sillé,Levchenko,Jabbour,Kagan,Kagan,Berlinicke,Huang,Maertens,Maertens,Herrmann,Tsaioun,Tsaioun,Dastgheyb,Dastgheyb,Habela,Habela,Vogelstein和Hartung。这是根据Creative Commons归属许可(CC BY)的条款分发的开放式文章。允许在其他论坛上使用,分发或复制,前提是原始作者和版权所有者被记住,并且根据公认的学术实践,请引用本期刊中的原始出版物。不允许使用,分发或复制,不符合这些条款。
癌症是主要的健康问题,发病率和死亡率都很高。全球每年因癌症发病和死亡的人数估计以百万计 [1,2]。因此,必须不断推广和发展癌症治疗。与其他疾病一样,癌症研究高度依赖于有代表性和可靠的模型。然而,肿瘤并不是统一的,而是异质性的,并且比其他疾病更具变化性和复杂性,这使得对其的研究极其困难且昂贵 [3]。癌症最常见的治疗方法是基于手术 [4]、化疗 [5]、放疗 [6] 和免疫疗法 [7]。癌症对这些不同治疗策略的反应因肿瘤亚型、临床分期和相关风险因素而异,不幸的是,在不同情况下都无法限制癌症的进展。即使是同一器官或组织的同一种肿瘤,不同患者对治疗的反应也不同,与高耐药性相关的复发和转移是主要问题 [8]。此外,化疗由于其潜在的副作用而影响生活质量,因此不受许多患者的青睐。因此,为了实现患者更加个性化的治疗,迫切需要合适的模型来高精度地预测治疗反应。
在怀孕的第一个月中,大脑和脊髓是通过称为神经化的过程形成的。但是,该过程可以通过低血清叶酸,环境因素或遗传易感性来改变。在2018年,博茨瓦纳进行的一项监视研究是一个人类免疫缺陷病毒(HIV)发病率很高的国家,缺乏强制性的食品叶酸强化计划,发现他的母亲在怀孕期间服用Dolutegravir(DTG)的新生儿在怀孕期间的孕妇患有Neural Tube Tube Defects(NTDS)的风险增加了)。结果,世界卫生组织和美国食品和药物管理局发布了指南,强调了与怀孕期间使用基于DTG的抗逆转录病毒疗法相关的潜在风险。为了阐明DTG诱导的NTD的潜在机制,我们试图评估干细胞衍生的脑器官中DTG的潜在神经毒性。通过RNA测序,光学相干断层扫描(OCT),光学相干弹性造影(OCE)和Brillouin显微镜分析了在DTG存在下开发的脑器官的基因表达。测序数据表明,DTG诱导叶酸受体的表达(FOLR1),并修饰神经发生所需的基因的表达。在DTG暴露的脑器官表面观察到的Brillouin频移表明浅表组织刚度的增加。相比之下,回响的OCE测量表明有机量减少和内部刚度。
小胶质细胞是专门的脑居民巨噬细胞,在大脑发育,稳态和疾病中起着至关重要的作用。,到目前为止,建模人脑环境和小胶质细胞之间相互作用的能力受到严重限制。为了克服这些局限性,我们开发了一种体内异种移植方法,该方法使我们能够研究在生理上相关的,血管化的免疫能力的人类脑器官(IHBO)模型中运作的功能成熟的人类小胶质细胞(HMG)。我们的数据表明,类器官居住的HMG获得了与其体内相对物相似的人类特异性转录组特征。体内两光子成像表明,HMG积极参与监视人的大脑环境,对局部伤害做出反应并应对全身性炎症提示。最后,我们证明了这里开发的移植的IHBO为健康和疾病中研究功能性人体小胶质细胞表型提供了前所未有的机会,并为脑脑中的自闭症患者特异性模型提供了脑环境诱导的免疫反应的实验证据。
摘要:组织培养物,尤其是脑器官的分析,进行了高度的协调,测量和监测。我们已经开发了一个自动化的研究平台,使独立设备能够实现以反馈驱动的细胞培养研究实现协作目标。由物联网(IoT)体系结构统一,我们的方法可以在各种感应和驱动设备之间进行连续的,交流的互动,从而实现了对体外生物学实验的准时控制。该框架整合了微流体,电生理学和成像装置,以维持脑皮质器官并监测其神经元活性。类器官是用定制的3D打印室进行培养的,该腔室附着在商业微电极阵列上,用于电生理监测。使用可编程的微流体泵实现周期性喂养。我们开发了抽吸培养基的计算机视觉量估计,达到了高精度,并使用了反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过比较手动和自动化方案的7天研究对系统进行了为期7天的研究。自动化的实验样品在整个实验过程中保持了强大的神经活性,与对照样品相当。自动化系统启用了每小时的电生理记录,该记录揭示了在每天一次的录音中未观察到神经元发射率的巨大时间变化。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.12.12.637574 doi:Biorxiv Preprint
内耳的发育需要从不同上皮,间质和神经元谱系中协调细胞类型。尽管我们从动物模型中学到了很多东西,但有关人内耳发育的许多细节仍然难以捉摸。我们最近在3D培养中使用多能干细胞开发了一种人体内耳有机发生的体外模型,从而促进了包括毛细胞和神经元在内的感官电路的生长。尽管以前表征了某些细胞类型,但许多细胞仍然不确定。本研究旨在绘制内耳手机体的体外开发时间表,以了解发挥作用的机制。在分化的前36天,我们在十个阶段使用单细胞RNA测序,我们跟踪了暴露于特定信号调节剂后从多能性到各种耳细胞类型的演变。我们的发现展示了影响分化的基因表达,鉴定出大量的外胚层和间质细胞类型。我们还辨别了类器官模型的各个方面与体内发育一致,同时突出了潜在的差异。我们的研究建立了内耳的器官发育地图集(IODA),为人类生物学提供了更深入的见解并改善了内耳组织的分化。
个体化疾病细胞模型是精准医疗重现慢性炎症过程的关键工具。类器官模型可以从诱导性多能干细胞 (iPSC) 或离体原代干细胞中获得。这些模型在过去十年中不断涌现,并被用于以无与伦比的深度重建相应器官特定的生理学和病理学。在癌症研究中,患者来源的癌症类器官为预测治疗反应开辟了新视角,并为肿瘤生物学提供了新见解。在慢性炎症的精准医疗中,基于干细胞的类器官模型目前正在临床前药效学研究(培养皿中的临床研究)中进行评估,并用于临床研究,例如通过重新移植自体上皮类器官来重建肠道屏障完整性。 iPSC 系统的一个特别令人兴奋的特点是它们能够提供对器官系统和炎症性疾病过程的洞察,而这些过程无法通过临床活检进行监测,例如神经退行性疾病中的免疫反应。分化方案的改进和下一代共培养方法旨在体外生成自组织的复杂组织,将是下一步的合理步骤。在这篇小型评论中,我们批判性地讨论了当前最先进的干细胞和类器官技术,以及它们在对抗免疫介导的慢性疾病方面未来的影响、潜力和前景。