钻孔热交换器(BHE)可显着提高地面源热泵(GSHP)系统中的热交换效率。准确预测BHE的出口流体温度对于优化GSHP性能,存储和资源保护至关重要。传统的机器学习方法通过手动特征提取和复杂的非线性关系面临挑战。为了克服这些,这项研究引入了长期出口流体温度预测的混合卷积神经网络(CNN)和复发性神经网络(RNN)模型。该模型使用CNN进行时间特征提取和RNN进行顺序模式学习。对LSTM,CNN和Simpleernn模型进行了评估,提出的模型实现了卓越的性能,RMSE为0.818,MAE为0.642,AARE为0.0305,R²为98.75%,证明了BHE系统效率和可持续性的显着进步。
1 在以下标准条件下的冷却能力:电源 400V/3ph/50Hz;室外温度 35°C;冷却剂入口/出口温度 15/10 °C;乙二醇 30% 在以下标准条件下的自由冷却能力:电源 400V/3ph/50Hz;室外温度 5°C;冷却剂入口温度 15°C;乙二醇 30%;冷却剂流体流量如 (1) 条件所示 2 在以下标准条件下的冷却能力:电源 400V/3ph/50Hz;室外温度 35°C;节能器选项冷却剂入口/出口温度 15/10 °C;乙二醇 30% 3 在室外温度 35 °C 下测量;距离设备 1m;自由场条件;根据 ISO 3744 4 在室外温度 35°C 下计算
1 在以下标准条件下的冷却能力:电源 400V/3ph/50Hz;室外温度 35°C;冷却剂入口/出口温度 15/10 °C;乙二醇 30% 在以下标准条件下的自由冷却能力:电源 400V/3ph/50Hz;室外温度 5°C;冷却剂入口温度 15°C;乙二醇 30%;冷却剂流体流量如 (1) 条件所示 2 在以下标准条件下的冷却能力:电源 400V/3ph/50Hz;室外温度 35°C;节能器选项冷却剂入口/出口温度 15/10 °C;乙二醇 30% 3 在室外温度 35 °C 下测量;距离设备 1m;自由场条件;根据 ISO 3744 4 在室外温度 35°C 下计算
管道尺寸、坡度、长度和材质 流向箭头 集水池(CB 和边缘类型、边缘和内底标高) 滞留/渗透/水质/渗透拱顶,包括长度、宽度和深度尺寸;顶部、进水口和出水口管道标高 滞留/渗透池和水质洼地水面标高、垂直和水平尺寸,以及所有进水口和出水口管道内底标高 地块(地块和分区)上短管的内底标高 拱顶尺寸(横截面和平面图详图) 控制集水池、人孔和溢洪道 流入溪流、小溪或沟渠的所有排水口内底标高,以及下游水道的流向 记录位于显示滞留性能表的平面图上的最终雨水滞留摘要图纸。(见下表) 其他(列表):
1 在以下标准条件下的冷却能力:电源 400V/3ph/50Hz;室外温度 35°C;冷却剂入口/出口温度 15/10 °C;乙二醇 30% 在以下标准条件下的自由冷却能力:电源 400V/3ph/50Hz;室外温度 5°C;冷却剂入口温度 15°C;乙二醇 30%;冷却剂流体流量如 (1) 条件所示 2 在以下标准条件下的冷却能力:电源 400V/3ph/50Hz;室外温度 35°C;节能器选项冷却剂入口/出口温度 15/10 °C;乙二醇 30% 3 在室外温度 35 °C 下测量;距离设备 1m;自由场条件;根据 ISO 3744 4 在室外温度 35°C 下;根据 ISO 3744 计算
Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
太阳能收集器和工作流体之间的对流和导电热传递使光热性能有限,并导致从传统吸收剂表面到周围环境的热量损失较高。直接吸收太阳能收集器(DASC)是改进光热性能的有利替代方法。在这项研究中,使用TRNSYS进行了基于纳米结构太阳能收集器的性能的模拟。在这项研究中,通过使用纳米流体和三种不同的纳米结构材料CUO,GO和ZnO,可以改善来自直接太阳能收集器的结缔组织和导电热传递。分析确定了通过直接太阳能收集器的工作流体的出口温度。TRNSYS模型由拉合尔市的直接太阳能收集器和天气模型组成,整整一年进行了1,440小时。使用UV-VIS分光光度计研究了水中这些纳米结构材料的稳定性。确定了直接太阳能收集器的各种性能参数,例如出口收集器温度和传热速率的变化。通过实验结果验证了数值模型。对于基于GO的纳米流体,观察到63°C的最高出口温度。模拟结果表明,全年,纳米流体改善了直接太阳能收集器的性能。与水相比,基于CUO,ZnO的纳米结构的纳米液体观察到23.52、21.11和15.09%的传热率的显着提高,与水相比分别进行。这些纳米结构材料在太阳能驱动的应用中是有益的,例如太阳能脱盐,太阳能水和空间加热。
今天,有17%的可回收柔性聚乙烯已经在电影对电影应用程序中找到了插座,而非食品包装和建筑和建筑是其最大的市场,而预测表明,PE膜产品总体上可以在2030年到2030年的再生内容。
主要 o 存储容量(水箱有多大?)(kWh)例如,您能存储多少能量? o 供电容量(出水水龙头有多大?)(kW)例如,您能多快将能量释放出来?
必须将其放置在远离阳光直射且通风良好的地方。 周围必须有足够的空间让空气自由流动。 附近必须有一个电源插座,该插座只能由设备使用,而不依赖于电灯开关。(不得使用延长线。)