包。patran 3.0是由PDA工程创建的计算机软件包的最新版本,用于预处理和后处理有限元代码。[f兼容,Patran 3.0将用于定义组件表面的几何形状TOR纤维放置Windin_操作。这些表面的地貌必须使用Patran的模型替代能力产生。然后将计算机模型加载到硅图形工作站中,以便可以定义光纤放置路径。定义了光纤路径后,生成了FPM的实际机器指令代码。然后将机器指令加载到FPM中,并且可以制造所需的组件。FPM离线软件最初旨在读取Patran 2.5中性文件和I-DEAS(计算机自动化设计(CAD)软件包)通用文件。辛辛那提米拉克龙将评估并建议蒂科尔关于帕特兰3.0代码的兼容性。预计这不会是问题,而Patran 3.0代码将是可用的。
第一步是进行文献研究和收集事实,以了解喷气发动机部件分析的要求和需求。然后,将沃尔沃的内部软件(沃尔沃现在使用的软件)与要求和需求进行比较和评估。在这项工作中,软件被证明是不够的,注意力集中在外部软件(沃尔沃现在不使用的软件)上。之后,审查了几种外部软件,并在简单的测试案例上测试和评估了 Patran Laminate Modeler。从这些测试案例中积累了经验。根据这一经验,提出了一种将此软件与其他软件结合使用的工作过程方法。然后在一个完整的组件上验证了这种方法。得出结论并记录下来。测试的内部 FE 软件是 Ansys 7.1、Patran 2004、Nastran 2004 和 Marc 2003。Patran Laminate modeler 是唯一经过测试的外部软件。
随后,FEM 结果被用作静态和疲劳检查应力分析的一部分。FEM 和应力计算是推力反向器认证和适航过程的重要组成部分。有限元建模使用 MSC PATRAN 进行 FEM 的初始构建、负载应用和结果的后处理分析。推力反向器主要以 2D 壳元素(CQUAD 和 CTRIA)和 1D 梁元素(CBEAM 和 CBAR)建模。实体元素(CHEXA)用于在需要更高精度结果的关键区域创建细网格。
该中心促进了与产品验证相关的体验式学习。产品验证分析中心为行业环境提供了主要行业用于产品验证和设计优化的最新技术工具。该中心包括模拟软件技术,使工程师能够使用虚拟原型验证和优化他们的设计。这些技术帮助公司提高质量、节省时间并降低与制造产品设计和测试相关的成本。这些软件(如 MSC Nastran、Patran 等)被领先的制造商用于线性和非线性有限元分析 (FEA)、流体动力学 (CFD)、高级材料建模、声学、流体结构相互作用 (FSI)、多物理场、优化、疲劳和耐久性、多体动力学、控制和制造过程模拟。
McNeal Schwendler 公司 (MSC) 成立于 1963 年,并获得了 NASA 的原始合同,将有限元分析 (FEA) 软件 NASTRAN(NASA 结构分析)商业化。MSC 率先开发了许多技术,现在业界依靠这些技术来分析和预测我们旗舰产品 MSC Nastran 中的应力和应变、振动和动力学、声学和热分析。在我们悠久的历史中,MSC 开发或收购了许多其他知名的 CAE 应用程序,包括 Patran、Adams、Marc、Dytran、CAEfatigue、SimManager、Easy5、Sinda、Actran、Digimat、Cradle CFD、VTD、FormingSuite、MSC Apex、Romax 和 Simufact。我们致力于持续开发新的 CAE 技术,将独立 CAE 工具中的学科和技术集成到统一的多学科求解器和用户环境中。我们的解决方案通过包含多物理场和多学科交互,使工程师能够提高虚拟原型的可靠性和准确性。MSC 还是 CAE 行业的领导者,通过针对材料和 CAE 数据的工程生命周期管理解决方案将模拟扩展到工程企业。
---------------------------------------------------------------------***--------------------------------------------------------------------------------- 摘要 - 挂架用于将飞机的框架连接到所携带的物品或物体上,因此,挂架是一种适配器,必须使用挂架来清除携带物品的控制面,并防止气流向机翼产生不必要的干扰。挂架通常设计成光滑的空气动力学形状,以减少空气阻力(阻力)。挂架有许多不同的形式、尺寸和设计,因此有不同的名称,如楔形适配器或短翼挂架。适配器安装在挂架下方。适配器的主要功能是在两侧携带双导弹。负载作用在适配器外壳的重心点(重心)上。适配器设计是为了减少阻力并增加推力。这是在现代飞机上使用的,因为它可以一次携带更多导弹。因此,在飞机的因素中必须考虑携带导弹的负载。关键词:适配器、吊架、patran 和 nastran、ansys workbench、导弹和发射器的负载。1.介绍
本演示文稿不应被视为建议任何人认购或购买以下任何证券:(i) IndiGrid 或其投资组合资产(即 IndiGrid Limited、IndiGrid 1 Limited、IndiGrid 2 Limited、Bhopal Dhule Transmission Company Limited、East-North Interconnection Company Limited、Jabalpur Transmission Company Limited、Maheshwaram Transmission Limited、RAPP Transmission Company Limited、Purulia Kharagpur Transmission Company Limited、Patran Transmission Company Limited、NRSS XXIX Transmission Limited、Odisha Generation Phase II Transmission Limited、Gurgaon Palwal Transmission Limited、Jhajjar KT Transco Private Limited、Parbati Koldam Transmission Company Limited、NER-II Transmission Project、Kallam Transmission Limited、IndiGrid Solar-I (AP) Private Limited、IndiGrid Solar-II (AP) Private Limited)、Raichur Sholapur Transmission Company Private Limited (RSTCPL)、Khargone Transmission Limited (KhTL)(统称“IndiGrid Group”),或 (ii) 其发起人(即 Sterlite Power Transmission Limited、 Esoteric II Pte. Ltd. 或发起人的子公司(统称“发起人实体”)所提供之价值不应作为任何投资决策的依据。
通常使用拼接来保持机翼蒙皮的空气动力学表面整洁。机翼是飞机产生升力的最重要的部件。机翼的设计因飞机类型和用途而异。翼盒有两个关键接头,即蒙皮拼接接头和翼梁拼接接头。内侧和外侧部分的顶部和底部蒙皮通过蒙皮拼接连接在一起。内侧和外侧的前翼梁和后翼梁通过翼梁拼接连接在一起。蒙皮承受机翼中的大部分弯曲力矩,而翼梁承受剪切力。本研究对机翼蒙皮的弦向拼接进行了详细分析。拼接被视为在机翼弯曲引起的平面内拉伸载荷作用下的多排铆钉接头。对接头进行了应力分析,以预测旁路载荷和轴承载荷引起的铆钉孔处应力。应力是使用有限元法在 PATRAN/NASTRAN 的帮助下计算的。疲劳裂纹将出现在机身结构中高拉伸应力的位置。此外,研究了这些位置总是高应力集中的位置。结构构件的寿命预测需要一个疲劳损伤累积模型。各种应力比和局部的应力寿命曲线数据
本论文的目的是评估在之前的论文和科学文章中研究的柔性航天器模型与在 MSC Adams 软件中实施的相同航天器之间的比较,旨在验证该模型。借助这一创新工具,可以评估用户可能希望获得的几个功能,进行非线性多体分析,从而提供更真实的数据集。法国航天局 (CNES) 的 Picard 卫星被用作航天器的主体,其动力学用刚体的欧拉方程表示。太阳能电池板和反作用轮的配置在位置和尺寸方面相对于 Picard 进行了修改,以便在 MSC Adams 中建造航天器时具有优势并拥有更通用的卫星类型。特别是,考虑了四个对称的太阳能电池板和位于航天器质心的三个反作用轮系统。这项工作最重要的方面是卫星的柔性部分,由四个太阳能电池板表示。使用 MSC Patran/MSC Nastran 进行有限元法 (FEM) 分析,以获得模型所需的自然模式和频率,并评估刚性和柔性部分之间的耦合矩阵。论文的第二部分是关于在 MSC Adams View 中实现航天器设计以及通过 MSC Adams 和 MATLAB/Simulink 环境进行的模拟阶段。在机动过程中,为姿态控制实施了一个简单的比例-微分 (PD) 控制器,目的是实现所需的欧拉角,旨在模拟指向特定目标的新指向方向的命令。对这两个模型进行了比较,以便更好地了解太阳能电池板柔性的影响以及 MSC Adams 中更复杂的分析与通过数学模型线性化、更近似的分析之间的可能差异。还评估了三块太阳能电池板发生故障时的姿态控制。 PD 控制器确保在操纵过程中具有良好的性能和稳定的响应,尽管系统受到外部(仅考虑重力梯度)和内部(太阳能电池板的振动)干扰。不过,如果太阳能电池板发生故障,这种基本控制器仍会出现一些问题。
由于存在碰撞风险和人造物体的堆积,尤其是在低地球轨道 (LEO) 中,围绕地球运行的空间垃圾的增多已成为现役航天器和未来任务面临的重大问题。为了缓解这一问题,人们提出了新的解决方案。空间机器人已被纳入在轨服务,以帮助人类在太空环境中开展活动,特别是机器人操纵器可以在主动清除碎片方面发挥关键作用。本论文的目的是开发一个灵活的航天器动力学和控制模型,包括空间操纵器。采用混合方法实现主体和操纵器动力学。具体而言,操纵器运动方程是从拉格朗日公式中获得的,而主体动力学则用刚体的欧拉方程表示。机械臂是一个带有两个连杆的两自由度 (DOF) 平面操纵器。主要结构特性是在与文献中的空间机械臂进行比较后选择的。另一方面,JAXA 微型卫星 PROCYON 被用作航天器的主体。与 PROCYON 航天器一样,也考虑了金字塔形配置的四个反作用轮系统。所有建模和仿真阶段均在 MATLAB/SIMULINK 环境中进行。这项工作的另一个重要方面是卫星的柔性部分,由 PROCYON 航天器的四个太阳能电池板表示。使用 PATRAN/NASTRAN 进行有限元法 (FEM) 分析,以获得模型所需的自然模式和频率,并评估刚性和柔性部分之间的耦合矩阵。论文的第二部分是关于控制策略。两种不同的控制器用于机械手的运动和主体姿态控制。机械臂采用简单的比例-积分-微分 (PID) 控制器,目的是实现所需的关节角度位置,以便捕获碎片/目标。对于姿态控制,采用具有线性二次调节器 (LQR) 的主动抗扰控制 (ADRC) 作为控制律,以便获得快速稳定的响应,并消除作用于系统的所有内部和外部扰动。仿真环境中的令人满意的结果证明了 ADRC 执行姿态控制的能力,