摘要:增材制造 (AM) 是制造技术发展的主要增量。过去几十年来,该研究领域取得了巨大进步,包括工艺、设备和材料的增长。无论技术进步多么引人注目,技术挑战都推动着这些技术的应用和发展。金属增材制造被认为是工业革命的主要领域。根据材料和工艺分类,已经开发出各种金属 AM 技术,包括选择性激光烧结 (SLS)、激光粉末床熔合 (PBF-LB/M) 和电子束粉末床熔合 (PBF-EB/M)。PBF-LB/M 被认为是金属材料最合适的选择之一。由于钽的高生物相容性及其高端安全应用,钽的 PBF-LB/M 已成为本世纪的研究热点。多孔钽的 PBF-LB/M 可通过调整机械和生物医学特性以及具有可预测特征的先进植入物设计,引领生物医学和骨科领域尚未开发的研究前景。本综述主要探讨使用 PBF-LB/M 工艺增材制造钽和相关合金的最新进展。分析包括对工艺参数、机械性能和潜在生物应用的评估。这将为读者提供有关钽合金 PBF-LB/M 现状的宝贵见解。
免责声明 本报告是由美国政府机构资助的工作报告。美国政府及其任何机构、芝加哥大学阿贡国家实验室或其任何员工或官员均不对所披露的信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡国家实验室的观点和意见。
免责声明 本报告是由美国政府机构资助的工作报告。美国政府及其任何机构、芝加哥大学阿贡国家实验室或其任何员工或官员均不对所披露的信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡国家实验室的观点和意见。
本报告为美国政府机构赞助工作的记录。美国政府及其任何机构、芝加哥大学阿贡分校有限责任公司及其任何员工或官员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡分校有限责任公司的观点和意见。
添加性生产(AM)合金的微结构和机械性能可能会受到冷却速率的变化的显着影响,这是由于不同的增材制造(AM)平台的不同过程条件所致。因此,了解制造过程对AM Inconel 718的微观结构和机械性能的影响至关重要。本研究研究了三个AM过程:激光粉末床融合,激光粉末定向能量沉积和电弧添加剂制造。结果表明,与激光粉末定向能量沉积(LP-DED)相比,全热处理的激光粉末融合(L-PBF)和带脉冲的加性生产(WAAM)Inconel 718样品具有更高的强度,这是由于L-PBF中的晶粒结构较细,并且在WAAM中保留了树突状微型结构。与WAAM和L-PBF相比,LP-DED Inconel 718中的延展性略高,因为碳化物尺寸相对较小,这会导致较小材料体积的应力浓度,从而导致断裂延迟。关键字:添加剂制造(AM);激光粉床融合(L-PBF);激光粉末定向能量沉积(LP-DED);电弧添加剂制造过程(WAAM); Inconel 718
混合增材制造 (AM) 是指两种金属 AM 技术的组合:粉末床熔合 (PBF) 材料沉积和定向能量沉积 (DED) 附加构建。本研究重点研究了混合 AM 生产过程中 PBF 和 DED 相对沉积方向的不同特性。将混合 AM 制备的样品(即混合样品)的特性与 PBF 或 DED 制备的样品的特性进行了比较。PBF 沉积物的微观结构以铁素体为主,局部可观察到非常细小的残余奥氏体。相反,DED 沉积物的微观结构中均匀形成板条马氏体和残余奥氏体。两种过程中微观结构的不同归因于冷却速度的差异。在 DED 沉积物中,由于残余奥氏体分数高,显微硬度显著降低。然而,在混合样品中,由于长期沉积的时效热处理,HAZ 中的显微硬度迅速增加。 PBF和DED样品的主要磨损机制分别是氧化磨损和塑性变形。
本研究调查了通过激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 制造的 Haynes 230 的微观结构和室温力学性能。L-PBF 和 LP-DED 样品均经过类似的多步热处理 (HT):应力消除 (1066°C,持续 1.5 小时),然后进行热等静压 (1163°C 和 103 MPa,持续 3 小时) 和固溶退火 (1177°C,持续 3 小时)。采用扫描电子显微镜进行微观结构分析。进行室温单轴拉伸试验以评估力学性能。L-PBF 和 LP-DED 样品在 HT 后的微观结构变化和拉伸结果具有可比性。在高温下,非热处理条件下观察到的微观偏析和树枝状微观结构几乎完全溶解,并且在 L-PBF 和 LP-DED 样品中的晶粒内部和晶粒边界内形成了碳化物相 (M 6 C/M 23 C 6 )。最后,研究了拉伸载荷下的失效机制,并通过断口分析进行了比较。关键词:增材制造、Haynes 230、激光粉末床熔合、激光粉末定向能量沉积、拉伸性能。
抽象目的 - 本文的目的是研究使用激光粉末床融合(LPBF)制造的镍含量(NITI)部分对镍含量(NITI)部分的均匀性的影响。此外,已经研究了制造参数和不同的熔融策略的影响,包括多个重新粘贴周期,可打印性和宏缺陷,例如孔隙和裂纹形成。设计/方法/方法 - 使用LPBF工艺来制造元混合粉末的NITI合金,并通过使用重新制定的扫描策略来评估改善制造标本的均匀性。此外,还使用了单一熔体和最多两个遥控器。发现 - 结果表明,重新升压可能对改善密度以及化学和相组成均匀化是有益的。扫描电子显微镜中的反向散射电子模式显示,在没有粘合的Ni和Ti元素粉末的情况下,响应增加了遥远的数量。所研究熔体的NITI零件的微值值相似,范围为487至495 HV。尽管如此,观察到的测量误差会随着遥控器的增加而降低,表明化学和相组成均匀性的增加。然而,X射线衍射分析揭示了多个阶段的存在,而与熔体运行的数量无关。独创性/价值 - 首次使用了作者的知识,使用重新放置扫描策略,通过LPBF制造了基本混合的NITI粉末。
本研究旨在表征采用激光粉末定向能量沉积 (LP-DED) 和激光粉末床熔合 (L-PBF) 制造的 17-4 PH 不锈钢 (SS) 在非热处理和热处理条件下的微观结构和晶体织构。研究发现,非热处理的 LP-DED 17-4 PH SS 具有粗柱状铁素体晶粒,并以魏德曼铁素体晶粒为点缀,而 L-PBF 对应物具有非常细小且大多为等轴的铁素体晶粒以及板条马氏体。根据使用 Thermo-Calc 生成的相图,L-PBF 和 LP-DED 17-4 PH SS 样品获得了相同的应力释放 (SR) 温度。软件。CA-H1025 热处理之前的 SR 步骤导致织构弱化并略微细化了晶粒结构。未经热处理的L-PBF 17-4 PH SS样品具有强的立方体和γ纤维织构,而进行SR-CA-H1025热处理后织构转变为较弱的γ纤维组分。