官僚功能化的小分子受体(SMA)在构造具有近红外吸收的材料方面具有独特的优势,但它们的光伏性能滞后于有机太阳能电池中含有S的类似物(OSC)。在此,通过调节外烷基链的分叉位点设计和合成了两个新的SE-EH和SE-EHP,即SE-EH和SE-EHP,从而使SE-EH和SE-EHP从CH1007产生SE-EH和SE-EHP以形成不同的3D晶体框架。se-eh显示出更严格的𝝅 - 𝝅堆积和密集的堆积框架,其具有较小尺寸的孔结构,这些孔结构是由较大的空间阻力效应在2位以2位分支的外烷基链效应,并且可以获得PM6的较高介电常数:SE-EH活性层。基于PM6的OSCS:SE-EH在二进制中获得了非常高的PCE,在三元设备中,二进制中的PCE非常高,二元期为19.03%,含SE的SMA的FF近80%。SE-EH中更重要的烷基链阻力效应可调节分子结晶,形成具有适当域大小的有利的纳米纤维互化网络,以降低子NS重组的速率,以降低子NS重组的速率,并促进载体的平衡运输。这项工作为进一步设计和开发高度有效的SE官能化SMA提供了参考。
材料综合,形态控制和设备工程已将PCE推向了19%以上的单连接设备,而串联配置的PCE超过20%。[5 - 8]关键的发展是非富裕受体(NFAS)的持续进展。特定的,低于1.6 eV的典型光学带隙(E G)的低带隙材料可以增强太阳光利用率:AM 1.5G太阳能光谱的光线分配使约51%的太阳能光子光子在近交易所区域(NIR)区域中发现。[9]此外,在这些材料中发现了其他吸引人的物理特性,包括强偶极矩和低激子结合能。[10]这些在NIR地区吸收的低频带NFA吸引了许多新兴的PV技术的兴趣。它们已在半透明的OPV中广泛用于各种应用,包括Agrivoltaics,电力生成窗户,热绝缘,磨损电子设备和建筑物集成的PV。[9,11,12]此外,它们将吸收范围扩展到NIR光谱的能力已在串联OPV中,[13-16] Ternary opvs,[17-19]和nir-absorting有机光探测器。[20 - 23]
抽象的有机 - 内有机卤化物钙钛矿由于其特殊的光电特性及其在钙钛矿太阳能电池(PSC)中的成功应用而被深入研究为潜在的光伏材料。然而,到目前为止,PSC中仍然存在大量缺陷状态,并且不利于其功率转换效率(PCE)和稳定性。在这里,提出了将单晶石墨烯量子点(GQD)纳入钙钛矿膜中的有效策略,以钝化缺陷状态。有趣的是,与对照钙钛矿膜相比,GQD修饰的钙钛矿膜表现出更纯净的相结构,更高的形态质量和更高的导电性。基于GQD修饰的钙钛矿膜,由GQD掺入的所有优点导致了快速的载体分离和运输,长期载体寿命和低非辐射重组。结果,这种PSC显示出所有光伏参数的增加,并且与对照PSC相比,其PCE显示出超过20%的增强。此外,这种新颖的PSC被证明具有对热和水分的长期稳定性和抵抗力。我们的发现提供了有关如何钝化缺陷状态并增强钙钛矿中的电导率的洞察力,并为它们进一步探索以实现更高的光伏性能铺平了道路。
溶液处理的有机太阳能电池 (OSC) 为实现轻质、经济高效、灵活和光学可调的光伏电池提供了一种有希望的途径。1,2 OSC 在室内和室外条件下都表现出了优异的性能,其能量转换效率 (PCE) 分别超过了 31% 3 和 19% 4。高性能 OSC 采用体异质结 (BHJ) 概念 5,即电子给体和电子接受域相互渗透的纳米级网络,以促进激子解离。BHJ 的形态细节,包括域大小、纯度、结晶度等,2,6 强烈影响电荷光生成、电荷传输和 PCE。分子取向被认为是影响光吸收、激子解离、电荷传输和能级排列的关键参数。7 对于 π 堆叠分子,面朝上的取向,即分子平面与基底平行,能够在分子堆叠内实现有效的垂直电荷传输。 8,9 另一方面,边缘取向,即分子平面相对于基底直立,在薄膜中产生有效的横向通路。10 因此,促进 OSC 中非平面电荷传输的努力强调了正面分子堆叠是 BHJ 活性层中理想的结构特征,8,11 而边缘堆叠通常被视为非预期且有害的。根据这种想法,许多研究已经注意到 BHJ 活性层中正面分子堆叠引起的电荷载流子迁移率和 PCE 增益。12–14
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
高功率转化效率(PCE)和机械鲁棒性是有机太阳能电池(OSC)可穿戴应用的先决条件。但是,应提高当前活动系统的可伸缩性(即裂纹发作菌株(COS)<30%)。在将弹性体引入活动系统中被认为是提高可伸展性的一种简单方法,但弹性体的包含通常会导致OSC的PCE减少,由于缺乏互连的电气和机械途径,该可拉伸性的提高有限。在这项研究中,它是通过在活动层中建立共轭聚合物(D18)和弹性体(SEB)的连续连续网络来发展的,具有特殊的机械鲁棒性(具有特殊的机械鲁棒性)。证明,D18的特定比(40:60 W/W)的混合膜:SEB对于形成共连接结构至关重要,建立了良好的机械和电通道。因此,D18 0.4:SEBS 0.6 /L8-BO OSC的可伸展性(COS = 126%)比基于D18 /L8-BO(COS = 8%)的OSC高16倍(COS = 126%),而基于SEBS-rich Active Layers = 3.8 0.8 0.20%的OSC(12.13%),达到4倍的PCE(12.13%)。此外,D18 0.4:SEBS 0.6基于0.6的IS-OSC将原始PCE的86%和90%的菌株保留在50%的菌株中,分别以15%的菌株拉伸/释放循环后,证明了报告的IS-OSC中最高的机械鲁棒性。
甲基铵碘化锡( )钙钛矿纳米晶体由于其带隙窄、可见光吸收系数高、比铅基对应物( )更环保,引起了研究兴趣,并成为光伏领域的后起之秀。本文提出了一种以氧化锌(ZnO)和氧化铜(CuO)为电子传输介质(ETM)和空穴传输介质(HTM)的锡基钙钛矿太阳能电池,并使用太阳能电池电容模拟器(SCAPS)工具进行数值研究。在适当的参数下,初步模拟获得了短路电流密度(Jsc)为 27.56 / 、开路电压(Voc)为 0.82 、填充因子(FF)为 59.32 % 和功率转换效率(PCE)为 13.41 %。通过改变吸收层和电子传输层的厚度,观察到ZnO和ZnO的最佳厚度分别为0.6和0.3,相应的PCE分别为14.36%和13.42%。使用优化参数进行模拟后,记录到Jsc为29.71 /,Voc为0.83,FF为61.23%,PCE为15.10%。这些值优于未经优化获得的值,这意味着通过调整钙钛矿和电子传输层可以在一定程度上提高太阳能电池的性能,同时钙钛矿太阳能电池(PSC)是一种具有相当高效率的潜在环保太阳能电池。
累积部署的薄效率 - 光电脉冲和薄的光伏制造能力的行业领导者都通过蒸气加工产生其镉的太阳能电池。4 - 6此外,可以使用蒸气处理通过Heliatek GmbH对有机光伏的溶液或蒸气方法进行制造。7与这些技术类似,基于蒸气的加工有望在基于钙钛矿的光伏的商业化中发挥关键作用。8它们不仅可以启用具有高产量和可重复性的高质量工艺,而且还可以消除危险溶剂,并简化对较大设备区域的升级。9此外,通过蒸气加工均匀地涂层在粗糙表面上涂层的能力是有益的,在串联应用中,在部署基于perovskite的材料时,这一点尤其重要。10 - 12虽然只有一小部分的研究专注于卤化物钙钛矿材料的蒸气加工,但其进度绝不比基于溶液的方法不如基于溶液的方法,尤其是在研究最多的混合有机有机物 - 无机卤化盐酸钙钛矿材料时。13 - 15个使用蒸气加工有机 - 无机卤化物钙钛矿吸收剂的太阳能电池的降低功率转化率(PCE)为24.4%,16个与基于溶液的方法相当。17
摘要 卤化物钙钛矿太阳能电池 (PSC) 已成为下一代光伏技术中最有前途的技术之一,为提高效率、降低成本和快速扩展提供了途径。它们的独特属性——包括高吸收系数、可调带隙、缺陷容忍度和低温可加工性——使开发能够超越传统硅基技术的多功能太阳能设备成为可能。最近的突破推动钙钛矿太阳能电池的能量转换效率 (PCE) 在单结电池中超过 27%,在串联配置中超过 34%。然而,仍然存在重大挑战,特别是在长期稳定性、与铅含量有关的环境问题以及商业部署的可扩展性方面。这篇评论文章讨论了卤化物钙钛矿研究的现状,重点介绍了材料设计、设备架构和制造工艺方面的进步,这些进步推动 PSC 走在可再生能源技术的前沿。我们探索了钙钛矿光伏的潜在应用,从串联太阳能电池到柔性、建筑集成和便携式设备,以及它们在克服硅光伏局限性方面的作用。尽管钙钛矿太阳能电池前景光明,但在实现广泛商业化之前,它必须解决持续存在的挑战,例如现实条件下的稳定性和铅毒性。通过研究最近的进展和确定未来的研究方向,这篇评论文章全面展望了卤化物钙钛矿太阳能电池在塑造全球能源系统未来方面的作用。
有机-无机金属卤化物钙钛矿正在迅速接近最先进的硅太阳能电池,性能最佳的设备现在已达到 25.7% 的能量转换效率 (PCE)。[1] 尽管稳定性仍然是钙钛矿太阳能电池 (PSC) 面临的挑战,但它们的溶液加工性是一大优势。刮刀涂布、[2] 狭缝模头涂布 [3] 和喷涂 [4] 等技术与卷对卷 (R2R) 加工兼容,原则上,这应该可以实现比现有硅太阳能技术高得多的生产速度。然而,用于结晶钙钛矿活性层的漫长退火时间降低了实际制造过程中可以达到的最大理论网速。2020 年,Rolston 等人展示了所有可扩展 PSC 加工技术中最高的涂层速度,实现了 > 12 m min −1 的生产速度。 [5] 喷涂工艺与大气等离子体后处理工艺相结合,[6] 制备出的 PSC 器件和模块的 PCE 分别为 18% 和 15.5%。至关重要的是,它们是在不对钙钛矿层进行退火的情况下制造的。在这种速度下,模块成本预计可以与 Si 完全竞争。[7] 相比之下,经过 10 分钟退火的旋涂 PSC 的计算吞吐率仅为 0.017 m min −1 ;这个速率远远超出了商业化要求。此外,高温处理步骤会增加公用设施成本并降低吞吐率,从而增加了器件制造成本。[8] 高工艺温度也与许多敏感的柔性(聚合物)基板不兼容,而这些基板预计在“物联网”应用中非常重要。[9,10] 这个不断增长的市场预计将使钙钛矿的初始投资和市场进入门槛降低一个数量级。[11]