您可以自行发起和探索在我们提供的框架之内和之外实现理解的不同方法,并制定自己的年度学习计划。我们希望您阅读讲座材料以外的内容,包括讲师建议的阅读材料。我们希望您找出您特别感兴趣的领域,然后进一步阅读,与同学和课程贡献者讨论,并参加系里和其他地方的相关研究研讨会。我们还希望您找出问题领域,并通过向课程贡献者和/或您的系顾问寻求建议以及阅读适当的背景材料来采取措施解决任何困难。
摘要 - 本文提出了一种结合加固学习(RL)和PDN DETAP优化的遗传算法(GA)的混合算法。训练有素的RL代理使用图形卷积神经网络作为策略网络,并预测给定PDN阻抗和目标阻抗的DETAP解决方案,该解决方案是将其作为初始种群的播种。训练有素的RL代理在脱皮端口的数量方面可扩展。主要目标是节省计算时间并找到接近全球的最小值或全球最小值。通过转移学习来实现算法对不同DETAP库的概括,最终减少了RL代理的训练时间。 所提出的算法发现,与遗传算法相比,满足目标阻抗的脱酸溶液是两倍。通过转移学习来实现算法对不同DETAP库的概括,最终减少了RL代理的训练时间。所提出的算法发现,与遗传算法相比,满足目标阻抗的脱酸溶液是两倍。
环境恶化现象日益严重,已成为全球亟待解决的问题,它危及生态系统,阻碍全球可持续发展的前景。因此,本研究旨在探索可再生能源 (RE) 与生态足迹 (EF) 之间错综复杂的相互作用,同时考虑财政能力 (FIC)、人类发展 (HDI)、制度质量 (IQI) 和人口密度 (PDN) 的条件影响。该研究利用 2000 年至 2022 年涵盖 74 个发展中国家的面板数据,采用动态面板阈值回归方法,包括使用和不使用工具变量方法。研究结果揭示了 RE 和 EF 之间的非线性关系,揭示了 FIC (1.870)、HDI (0.736) 和 IQI (0.311) 的显著阈值,高于该阈值时,RE 可有效减轻 EF。相反,当这些预测因子低于 FIC(1.391)、HDI(0.655)和 IQI(0.2545)的阈值时,RE 对 FE 的影响就变得微不足道。此外,该研究在分析中引入了 PDN 作为额外的阈值变量,指出 RE 在降低 EF 方面的有效性取决于 PDN 是否低于阈值 263.144;然而,高于阈值 276.98,PDN 对 RE-FE 关系的影响就会减弱。研究结果强调了发展中国家政策格局的复杂性。他们建议,虽然推广可再生能源对于环境可持续性至关重要,但加强现有的环保财政能力、提高人力资本、提高机构质量和制定有效的人口分布政策也同样重要。
简介:疼痛的糖尿病神经病(PDN)是一种棘手的慢性疼痛疾病,影响了中国越来越多的成年人。脊髓刺激(SC)已在PDN治疗中已有几十年了。但是,SC的功效和潜在机制仍然没有定论。方法:在本研究中,我们采用了可植入的脉冲发生器来提供电刺激(50 Hz,200 US脉冲宽度,5周内12小时/天)通过腰椎硬膜外空间中的四极电极在PDN大鼠模型中治疗疼痛超敏。电子von Frey和Hargreaves测试分别用于测量对机械和热刺激的反应。定量PCR,蛋白质印迹和酶联免疫吸附测定法(ELISA),以探索SC后神经炎症的变化。结果:SCS在糖尿病大鼠的3周内缓解了机械性异常和热痛觉过敏。SC完全抑制了神经病诱导的TLR4和NFκBp65升高,导致脊髓背角中促进疼痛的IL1β,IL6和TNFα蛋白的减少。结论:SC可以通过减轻脊髓背角神经炎症来减轻糖尿病神经病引起的疼痛超敏反应。
板载AI处理要求功率效率与传统的12V总线相比,48V总线减少了PDN损失NBM2317固定比例转换器有效地将48V总线桥接到12V AI Systems
该系在唐宁区拥有两栋建筑,包括教学设施、配备用于各种研究项目的研究实验室以及剑桥高级成像中心等设施。它参与了一系列大学跨学科研究计划,包括剑桥神经科学、剑桥生殖、剑桥心血管疾病、新陈代谢、干细胞。该系成员为生物科学学院的多个研究主题做出了贡献,包括在神经科学和生殖、发育和终身健康方面担任领导角色(https://www.bio.cam.ac.uk/research/research-themes)。PDN 还在剑桥干细胞研究所和格登研究所设有附属机构,并且靠近其他主要生物部门,包括心理学、遗传学、生物化学和病理学。PDN 与临床学院、兽医学院、MRC 脑修复中心和 MRC 分子生物学实验室有着密切的合作关系。
摘要 本研究开发了用于三维集成电路 (3D-IC) 的背面埋入金属 (BBM) 层技术。该技术在每个芯片背面的大片空白区域引入用于全局电源布线的 BBM 层,并与芯片正面布线并联。电源 (V DD ) 和地 (V SS ) 线的电阻因此而降低。此外,由于 BBM 结构埋入 Si 衬底中并具有金属-绝缘体-硅结构,因此可充当去耦电容。因此,引入 BBM 层可以降低电源传输网络的阻抗。3D-IC 的 BBM 层制造工艺简单,并且与后通孔硅通孔 (TSV) 工艺兼容。利用该工艺可以在 CMOS 芯片(厚度:43 µm)背面埋入由电镀 Cu(厚度:约 10 µm)组成的 BBM 层,并通过直径 9 µm 的 TSV 将 BBM 与芯片正面布线相连。 关键词 三维集成电路(3D-IC),背面埋入金属(BBM)层,硅通孔(TSV),供电网络 I. 引言 采用硅通孔(TSV)的三维集成电路(3D-IC)技术[1]–[5]是生产先进、高速、紧凑和高功能电子系统的有效方法。然而,堆叠多个芯片会导致电路设计的电源完整性问题。例如,由于可用于电源和地线的 TSV 数量有限,3D-IC 中的 IR 压降会增加。此外,在 3D-IC 中同时切换堆叠芯片时,会产生很大的同时切换噪声(di/dt 噪声)。这种同步开关噪声会在电源输送网络 (PDN) 中产生不可预测的电压变化,从而导致系统故障。为了解决这一电源完整性问题,不仅必须在电路板/中介层级降低 PDN 的阻抗,还必须在芯片级降低 PDN 的阻抗,并提高电源输送的可靠性。先前的研究提出了一些降低芯片级 PDN 阻抗的方法。第一种方法是加宽电源线/地线。这种方法非常简单,但由于线路资源有限,难以应用。
¶ 通讯作者。muotri@ucsd.edu。*现地址:内布拉斯加大学动物科学系,美国内布拉斯加州林肯市 68583。†现地址:密苏里大学邦德生命科学中心,美国密苏里州哥伦比亚市 65211。‡加利福尼亚大学旧金山分校 Eli 和 Edythe Broad 再生医学和干细胞研究中心,美国加利福尼亚州旧金山 94143。§哈佛医学院生物医学信息学系,美国马萨诸塞州波士顿 02115。作者贡献:ARM 和 REG 设计了该研究。CAT、NKS 和 ESR 设计了单倍型遗传和可变剪接实验,并在 BS、REG 和 ARMCAT 的帮助下进行了分析,PDN 生成并表征了皮质类器官并进行了 MEA 记录。MSAF、FSB 和 AHK 进一步分析了 MEA 记录。 CAT、JB、SP 和 AW 执行并分析了单细胞转录组学。CAT 和 RAS 执行了细胞数量、增殖和凋亡以及突触量化。CAT 和 PDN 分析了 MEA 数据。PDN 和 RAS 执行了 Ingenuity Pathways 分析和蛋白质印迹。AH 和 CAT 设计了所有形态测量实验。IAC、AAM 和 ECW 在 GWYAB 的输入下执行并分析了 eCLIP,在 CVESR 的输入下执行了 RNA 提取和文库制备实验,MM 在 ANBESR 的输入下分析了 RNA-seq 数据,NKS 进行了其他计算分析。RHH 分析了珠芯片阵列和全外显子组测序。JDL 和 SEPS 进行了共免疫沉淀数据收集和分析。KS 提供了重要意见。所有作者均审阅了稿件以供发表。
背面电源传输网络 我们的 BS-PDN 结构如图 1 所示,其中 PDN 利用了几乎 100% 的 BSM 资源,将电源布线资源与正面的信号分离。A. 背面 DC-DC 转换器:片上 DC-DC 单元转换器 (UC) 提供高效转换和块级电压调节 [3]。封装寄生效应会导致不必要的 IR 压降/反弹,影响正面 (FS) 和 BS-PDN。相反,片上 UC 可以减轻封装和键合带来的压降;然而,它们的大尺寸使它们不适合 FS 集成。相比之下,背面提供了足够的空间,可以实现密集的 UC 集成而不会造成布线拥塞。B. BS-UC 的集成:我们的 4:1 背面 UC(BS-UC)将 3.3V 降至 0.7V 的片上电源电压。为了分离两个电压域,添加了两个额外的背面金属层 MB3 和 MB4(见表 I)。MB3 专用于 BS-UC 布线;MB4 用于为 BS-UC 提供 3.3V VDD 和 0V VSS 输入。图 2 显示了我们的 BS-UC 堆叠。我们的电压域去耦确保 MB4 和 MB2 层之间没有连接,从而保留了 BS-PDN 配置。对于 BS-UC 放置,我们应用了交错策略以实现紧凑性。BS-UC PDN 金属层击穿和 BS-UC 放置如图 3 所示。C. BS-UC 的好处:BS-UC 降低了最坏情况下的动态 IR 降和逐层最小电压降(见图 4)。最后,去耦策略可以实现更高的 C4/微凸块密度,而不会产生显著的电源焊盘面积开销。