摘要:量子计算的最新进展正日益威胁目前广泛使用的密码系统的安全性,例如 RSA 或椭圆曲线签名。为了应对这一威胁,研究人员和标准化机构加速了向抗量子密码系统的过渡,统称为后量子密码 (PQC)。这些 PQC 方案由于其更大的内存和计算占用空间以及更高的潜在漏洞可能性而带来了新的挑战。在这项工作中,我们通过引入一种将安全密钥使用的数字签名升级到 PQC 的方案来应对这些挑战。我们引入了一种基于两个构建块的混合数字签名方案:一个经典安全方案 ECDSA 和一个后量子安全方案 Dilithium。即使另一个底层构建块被破坏,我们的混合方案也能维护每个底层构建块的保证,因此可以抵抗经典和量子攻击。我们通过实验证明,我们的混合签名方案可以在当前安全密钥上成功执行,尽管众所周知,安全的 PQC 方案需要大量资源。我们在 https://github.com/google/OpenSK/releases/tag/hybrid-pqc 上发布了我们方案的开源实现,以便其他研究人员可以在 nRF52840 开发套件上重现我们的结果。
量子计算是计算机工作方式的重大变革,它有望比传统系统快得多。这项新技术既带来了巨大的好处,也带来了巨大的问题,尤其是在加密安全措施方面。经典加密算法(如 RSA 和 ECC)依赖于某些数学问题很难解决的事实,例如离散对数和整数分解。量子算法(如 Shor 算法)可以快速解决这些问题。正因为如此,可扩展量子计算机的发展对当今广泛使用的加密方法的基本安全性构成了威胁。这篇简短的摘要介绍了量子计算对加密安全性的重大影响。它研究了量子算法造成的安全漏洞,并强调了找到后量子密码学 (PQC) 答案的重要性。PQC 希望制作无法被量子攻击破解的程序。这将确保在由量子计算机驱动的世界中,数字交互仍然是私密、安全和真实的。此外,切换到 PQC 还会带来很多问题,例如实施算法、确保它们都相同以及让人们在许多不同的技术环境中使用它们。摘要讨论了旨在标准化和实施 PQC 的当前研究项目和外国合作伙伴关系。它强调了提前规划以降低未来风险的重要性。
巴黎,法国 - 2025年3月11日 - Provenrun和Cryptonext很高兴宣布旨在增强嵌入式部门的安全解决方案的战略合作伙伴关系。 这项合作将使Provenrun添加Cryptonext的量词后加密(PQC)组件(PQC)组件到其可信赖的应用程序的目录中,使客户能够无缝整合尖端的安全技术。 通过量子计算的出现来应对量子威胁,传统的加密方法正在过时。 Cryptonext是Quantum Crypto敏捷性的领导者,提供了旨在减轻这些威胁的创新解决方案。 通过合并Cryptonext的PQC组件,ProvenRun将为其客户提供未来的安全措施,以确保长期保护防止不断发展的网络威胁。 对关键行业的未来防护安全性与两家公司的目标相吻合,以长期为受信任行业的客户提供服务,尤其是在汽车和国防部门。 ProvenRun在安全性软件解决方案方面的专业知识,再加上Cryptonext的高级加密技术,将为客户提供一个全面且强大的安全框架。 先进的安全操作系统/受信任的执行环境(TEE)的长期Provenrun Provencore的战略联盟现在将包括Cryptonext的PQC产品。 Provencore(为了为IoT设备提供无与伦比的安全性提供安全性)是第一个实现正式验证并持有享有声望的常见标准EAL7认证的操作系统。巴黎,法国 - 2025年3月11日 - Provenrun和Cryptonext很高兴宣布旨在增强嵌入式部门的安全解决方案的战略合作伙伴关系。这项合作将使Provenrun添加Cryptonext的量词后加密(PQC)组件(PQC)组件到其可信赖的应用程序的目录中,使客户能够无缝整合尖端的安全技术。通过量子计算的出现来应对量子威胁,传统的加密方法正在过时。Cryptonext是Quantum Crypto敏捷性的领导者,提供了旨在减轻这些威胁的创新解决方案。通过合并Cryptonext的PQC组件,ProvenRun将为其客户提供未来的安全措施,以确保长期保护防止不断发展的网络威胁。对关键行业的未来防护安全性与两家公司的目标相吻合,以长期为受信任行业的客户提供服务,尤其是在汽车和国防部门。ProvenRun在安全性软件解决方案方面的专业知识,再加上Cryptonext的高级加密技术,将为客户提供一个全面且强大的安全框架。先进的安全操作系统/受信任的执行环境(TEE)的长期Provenrun Provencore的战略联盟现在将包括Cryptonext的PQC产品。Provencore(为了为IoT设备提供无与伦比的安全性提供安全性)是第一个实现正式验证并持有享有声望的常见标准EAL7认证的操作系统。此集成为客户提供了量子安全性和加密敏捷性的无缝过渡,以确保其系统保持安全
摘要 - 量子计算的出现对传统的加密系统构成了深远的威胁,暴露了损害依赖RSA,ECC和类似经典加密方法的数字通信渠道安全性的漏洞。量子算法,尤其是Shor的算法,它利用了量子计算机的固有计算能力来有效地解决这些加密方案的基础数学问题。在响应中,量词后加密(PQC)成为一个关键领域,旨在开发弹性加密算法不受量子攻击的影响。本文描述了经典加密系统量量子攻击,阐明量子计算的原理的脆弱性,并介绍了各种PQC算法,例如基于晶格的密码学,基于代码的密码,基于哈希的密码学和多变量多核电密码学。该研究强调了PQC在量子计算进步中确保数字通信的重要性,这项研究强调了其在面对新兴量子威胁时在保护数据完整性,机密性和真实性方面的关键作用。
量子计算机有潜力解决困难的数学问题,因此,如果构建了大规模的量子计算机,则意味着对公钥加密(PKC)的重要威胁。Quantum加密后(PQC)的目标是开发与经典计算机和量子计算机相比的密码系统。dme是抗量子PKC算法的新建议,为NIST PQC标准化竞争提供了提出,以设置密码标准的下一代。dme是基于中央地图的新结构的多元公钥,签名和密钥封装机制(KEM)系统,允许公共密钥的多项式任意程度。在本文中,介绍了DME的高吞吐管道架构,并对Xilinx FPGA进行了硬件实现。实验结果表明,此处介绍的体系结构与文献中给出的其他PQC多元实现相比,表现出最低的执行时间和最高的吞吐量。
到 2027 年,网络犯罪的损失预计将高达 23.8 万亿美元。这主要是因为没有哪个计算机网络是没有漏洞的。在联网计算机中,个人数据的万无一失的网络安全被认为几乎是不可能的。量子计算机 (QC) 的出现将使网络安全恶化。QC 将大大缩短计算时间,从几年缩短到几分钟,为数据密集型行业带来福音。但 QC 会使我们当前的加密技术容易受到量子攻击,从而破坏几乎所有现代加密系统。在具有足够量子比特的 QC 出现之前,我们必须准备好量子安全策略来保护我们的 ICT 基础设施。后量子密码学 (PQC) 正在全球范围内被积极推行,以防御潜在的 Q-day 威胁。美国国家标准与技术研究所 (NIST) 通过严格的流程测试了 82 种 PQC 方案,其中 80 种在 2022 年的最后一轮测试后失败。最近,剩下的两种 PQC 也被瑞典和法国的密码学家团队破解,这使得 NIST 的 PQC 标准化流程面临严重危险。由于所有经 NIST 评估的 PQC 均失败,因此迫切需要探索替代策略。尽管网络安全严重依赖于密码学,但最近的证据表明,它确实可以使用零漏洞计算 (ZVC) 技术超越加密。ZVC 是一种与加密无关的绝对零信任 (AZT) 方法,它可以通过禁止所有第三方权限(大多数漏洞的根本原因)使计算机具有量子抗性。 AZT 在传统系统中是无法实现的,因此,一个经验丰富的欧洲合作伙伴联盟致力于构建紧凑、固态的设备,这些设备坚固、有弹性、节能、没有攻击面,可以抵御恶意软件和未来的 Q-Day 威胁。
摘要 — NIST 后量子密码 (PQC) 标准化项目可能是迄今为止规模最大、最雄心勃勃的密码标准化工作,因此它成为密码标准化项目的绝佳案例研究。预计随着 2022 年初第三轮的结束,NIST 将宣布第一组推进标准化的原语,因此现在似乎是回顾并看看可以从这项工作中吸取什么教训的好时机。在本文中,我们研究了 NIST PQC 项目的一个特定方面:软件实现。我们观察到,作为提交包的强制性部分包含的许多实现质量很差,并且忽略了软件工程中数十年历史的标准技术,以保证一定的基线质量水平。因此,如果不先花费大量时间来清理提交的参考实现,就不可能在后量子协议迁移和软件优化工作的实验中轻易使用这些实现。我们并不是要批评向 NIST PQC 提交包括软件实现在内的提案的密码学家:毕竟,不能合理地期望每个密码学家都具备软件工程方面的专业知识。相反,我们建议 NIST 等标准化机构如何在未来的努力中改进软件提交流程,以避免提交的软件出现此类问题。更具体地说,我们提出了 PQClean,这是一个用于 PQC 软件的广泛(持续集成)测试框架,现在还包含 NIST 第 3 轮候选方案的“干净”实现。我们认为,如果在提交截止日期之前很久就提供这样的框架(无论是在线持续集成设置,还是离线测试系统),那么 NIST PQC 提交中将包含更好的实现,并且总体上将为社区和 NIST 节省大量时间和精力。
混合量子经典计算基础架构是研究用例的有趣场景和研究,以便最好地使用当前的量子硬件。这种方法允许使用CPU和GPU基础架构和算法最有效地使用现有的量子硬件。目标演示的目标是介绍多个QPU+CPU+GPU混合量子量子计算集成和用例。位于远端端的量子 - 经典计算测试台 - Poznan超级计算和网络中心(PSNC)办公室和SC24场地将与专用的经典直接链路相互联系,该连接在量子加密后(PQC)和量子密钥分布(QKD)技术的基础上均可确保其固定。在长距离链接上,数据将由PQC算法加密,并在PSNC Office和Short QKD链接中本地进行SC24场地。此设置将展示分布式混合量子基础架构如何工作以及如何从计算认证和安全性的角度与最新的PQC和QKD Technologies相互连接。PQC算法将使用经典的DWDM服务和加密发电机确保长距离链接加密。在本地,作为最后一英里解决方案,链接可以通过QKD技术直接确定并与本地网络数据传输(例如MacSec服务)集成。这样的分布式环境将实施来自不同领域的许多用例
目前尚不清楚,是否有必要在现有数据清单之外花费额外的资源,仅仅是为了识别可能导致更早的 PQC 日期的缺失数据类型 一些具有较长保护期的数据(例如,72 年的人口普查数据)可能具有基于数据保护期的不可行的 PQC 实施日期 根据较长的数据保护期分析数据类型以确定转换的紧迫性,可能不会影响转换发生时间的可行性,因为这取决于 COTS 和软件库产品的可用性