von Neumann熵是量子信息理论中的关键概念,它量化了量子状态的歧义。此外,香农熵是古典信息理论中的重要概念,可以被视为古典状态中的冯·诺伊曼熵。baez,Fritz和Leinster衍生的Shannon熵是一种表征从经典系统到经典系统的测量功能的数量[1]。特别是,他们表明,如果以概率度量到非负实数的概率措施的映射被视为类别理论中的函子并满足某些特性,则表示为Shannon入口的不同。在本文中,我们试图通过将其结果扩展到量子系统来得出von Neumann熵(或Segal熵)。parzygnat最近扩大了结果[2]。与参考文献之一相比,我们方法的主要差异。[2]是使用被认为较弱的条件的使用。参考。[1]和[2],讨论仅限于衡量保留功能(或它们扩展到量子系统,统一 * - 肌形态),但是在本文中,我们考虑了表征任何量子通道的数量。尽管在本文中未提及,但许多不同的方法以表征香农熵和冯·诺伊曼熵(例如[3] - [6])而闻名。
传统的量子理论框架对空间和时间的处理方式截然不同,它通过量子通道表示时间相关性,通过多部分量子态表示空间相关性——这是经典概率论中不存在的不平衡现象。自从 Leifer 和 Spekkens [ Phys. Rev. A 88 , 052130 (2013) ] 在其开创性著作中呼吁对量子理论进行因果中性的表述以来,人们进行了许多尝试来纠正这种不对称,他们提出了一个量子系统随时间变化的动态描述,该系统被一个静态量子态所封装,但并没有就哪一个最合适达成明确的共识。在本文中,我们提出了一组可操作的量子态随时间变化的公理,以替代 Fullwood 和 Parzygnat [ Proc. R. Soc. A 478 , 20220104 (2022) ] 提出的公理,我们表明后者无法随时间诱导出唯一的量子态。我们提出的公理更适合描述任何超过两点的时空区域的量子态。通过这种重新表述,我们证明了 Fullwood-Parzygnat 状态随时间唯一地满足所有这些操作公理,统一了量子系统的二分时空相关性。