伊丽莎白线的开通将促进为现有和未来的社区提供新的住房和就业机会。战略道路、码头和泰晤士河之间的新连接和增强连接,以及公共领域的改善,将改善该地区的步行和骑行。可持续交通网络的进一步改善(包括对码头区轻轨和河上服务的改进)将使人们能够更好地获得工作、服务和旅游景点。
目前,CRISPR/Cas9 的使用是植物(包括生物量作物杨树)精确基因组工程的首选方法。在杨树中传递 CRISPR/Cas9 及其成分的最常用方法是通过农杆菌介导的转化,除了所需的基因编辑事件外,还会导致稳定的 T-DNA 整合。在这里,我们探索了通过 DNA 包被的微粒轰击将基因编辑试剂传递到模型树 Populus tremula x P. alba 中,以评估其开发无转基因、基因编辑树的潜力,以及其在特定靶位整合供体 DNA 的潜力。使用优化的转化方法,有利于再生暂时表达所传递供体 DNA 上基因的植物,我们再生了不含 Cas9 和抗生素抗性编码转基因的基因编辑植物。此外,我们报告了供体 DNA 片段在 Cas9 诱导的双链断裂处频繁整合,为靶向基因插入提供了机会。
摘要 测定Cas9对靶位点的切割效率对于基因组编辑非常重要。然而,这种测定只能通过体外方法进行,因为需要纯化Cas蛋白和合成gRNA。在这里,我们开发了一种体内方法,称为植物瞬时CRISPR/Cas编辑(TCEP)来测定Cas9的切割效率。按常规方法构建农杆菌介导的植物转化CRISPR/Cas载体。利用我们建立的瞬时转化方法,Cas9蛋白和gRNA瞬时表达并形成复合物以切割其靶位,从而导致动态DNA断裂。使用qPCR定量断裂的DNA以测量Cas9的切割效率。我们利用TCEP和体外方法研究了白桦和山杨×波利纳植物中Cas9对不同靶位点的切割效率。 TCEP法测定结果与体外法一致,说明TCEP法测定切割效率可靠。另外,利用TCEP法,我们发现热处理和超声处理均能显著提高CRISPR/Cas效率。因此,TCEP法具有广泛的应用价值,不仅可用于分析CRISPR/Cas效率,还可用于确定Cas9切割中涉及的因素。
森林是巨大陆地生态系统和水生生物多样性的潜在栖息地,在生态保护和气候调节中发挥着重要作用。人类对森林的压力导致森林消失、破碎化和退化。在气候变化制度下,可持续的森林保护方法的要求是重中之重。在林木中,杨树 (Populus L.) 在全球林业中引起了关注,因为它是改善城市景观质量和数量的有前途的材料。这些植物提供的木材可用作造纸业的原材料和潜在的生物燃料来源。然而,一些生物胁迫,如害虫和病原体的侵袭,严重影响杨树的生产和生产力。由于杨树的生命周期长,缺乏具有抗性基因的合适供体,通过传统的树木育种方法对杨树的改良受到限制。由于杨树具有高效的遗传转化能力,它已被用作研究基因功能的模型植物。本综述将全面概述杨树受到的害虫和病原体的侵袭,重点介绍其感染机制、传播途径和控制策略。此外,还将研究最广泛使用的遗传转化方法(基因枪介导、农杆菌介导、原生质体转化、micro-RNA 介导和 micro-RNA 成簇的规律间隔短回文重复序列 (CRISPR) 相关 (CRISPR-Cas) 系统方法和 RNA 干扰),以提高杨树对害虫和病原体的耐受性。此外,还将深入探讨分子生物学工具的前景、挑战和最新进展,以及它们在遗传转化以提高杨树抗虫害能力的安全应用。最后,讨论了通过各种基因工程技术开发的抗性转基因杨树的再生。
摘要 关键信息 早花系统 HSP:: AtFT 允许快速评估基于构建体 PsEND1:: barnase–barstar 的杨树基因遏制系统。转基因株系表现出花粉发育紊乱和不育。 摘要 通过花粉流从转基因或非本地植物物种向其可杂交的天然亲属进行垂直基因转移是一个主要问题。已经提出了基因遏制方法来减少甚至避免树种之间的基因流动。然而,由于代际时间长,评估树木的遗传遏制策略非常困难。在这种情况下,早期开花诱导可以更快地评估遗传遏制。虽然没有可靠的方法来诱导杨树的可育花,但最近开发了一种新的早花方法。在这项研究中,获得了含有基因构建体 PsEND1:: barnase–barstar 的早花杨树系。选择 PsEND1 启动子是因为它的早期表达模式、多功能性和产生与 barnase 基因融合的雄性不育植物的效率。 RT-PCR 证实了花朵中的 barnase 基因活性,花粉发育受到干扰,导致花朵不育。本研究开发的系统是研究森林树种基因控制的宝贵工具。
植物组织再生对于遗传转化和基因组编辑技术至关重要。在再生过程中,表观遗传修饰的变化伴随着细胞命运的转变。然而,两种单倍型中的等位基因特异性 DNA 甲基化如何影响再生过程中的转录动力学仍不清楚。在这里,我们应用跨物种杂交杨(Populus alba × P. glutumoosa cv. 84 K)作为一个系统,在等位基因水平上表征从头芽器官发生过程中的 DNA 甲基化景观。直接和间接芽器官发生均显示全基因组 DNA 甲基化的降低。在基因水平上,与表达基因相比,未表达基因的甲基化程度较高。在 DNA 甲基化水平与基因表达之间表现出显著相关性的基因中,75% 的基因的表达模式与 CG 环境中的 DNA 甲基化呈负相关,而 CHH 环境中的相关性模式则相反。等位基因偏向的DNA甲基化在芽器官发生过程中是一致的,等位基因特异性甲基化区域偏移的概率不到千分之一。等位基因特异性表达分析表明,在再生过程中只有1909个基因表现出相位依赖性的等位基因偏向表达,其中启动子区域转录因子结合位点差异较大的等位基因对表现出较大的等位基因表达差异。我们的研究结果表明,在芽器官发生过程中,两个亚基因组中的转录调控相对独立,这是由顺式作用基因组和表观基因组变异所致。
植物修复技术有可能是管理人类和多氟烷基物质(PFA)的具有成本效益的解决方案。在这项温室研究中,我们使用了通常用于植物修复的两种植物物种评估了PFA的摄取,Salix Miyabeana(Willow)和Populus trichocarpa(Poplar)。我们还评估了市售生长植物激素(萘乙酸(NAA))和微生物修正案对植物生长和PFAS摄取的影响。总体而言,观察到摄取,具体取决于全氟碳链的长度和功能组。90天后,在PFAS污染土壤中生长的植物中单个PFA的吸收范围为柳树的0.02%至35%的干重(DW),而Poplar的含量为0.4 - 29%。在植物中,短链PFA(即C 4 - 7个全氟烷基羧酸盐(PFCA)和C 4 Pertluoroallocalyl磺酸盐(PFSA))主要积聚在地上生物量中,而固定的更长的同源物(C 8 - 14 PFCA,C 6 - 8 PFCA,C 6 - 8 PFSA)主要累积了roots的累积。对于激素和微生物修正案,柳树和杨树都没有统计学上的显着趋势(p> 0.05)。有趣的是,微生物群落的组成并未基于PFAS暴露,而是基于植物物种的转移。90天后,柳树和杨树的PFA质量平衡均接近100%(p> 0.05),除PFBA,PFPEA,PFPEA,PFOS和FOSA外,所有PFA都接近。这些结果表明,虽然柳树和杨树有可能从土壤中提取短链PFA,但植物修复可能比提取的区域内稳定PFA(即提供液压控制)可能更有效。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。
CRISPR 介导的基因组编辑已成为生物性状遗传修饰的有力工具。然而,开发基于同源定向 DNA 修复 (HDR) 的高效、位点特异性基因敲入系统仍然是植物面临的重大挑战,尤其是在杨树等木本植物中。本文表明,同时抑制非同源末端连接 (NHEJ) 重组辅因子 XRCC4 和过度表达 HDR 增强因子 CtIP 和 MRE11 可以提高基因敲入的 HDR 效率。使用这种方法,BleoR 基因被整合到 MKK2 MAP 激酶基因的 3' 端以产生 BleoR-MKK2 融合蛋白。根据 TaqMan 实时 PCR 评估的完全编辑核苷酸,与没有 HDR 增强或 NHEJ 沉默相比,当使用 XRCC4 沉默结合 CtIP 和 MRE11 过度表达时,HDR 介导的敲入效率高达 48%。此外,HDR 增强子过表达和 NHEJ 抑制的组合还提高了基因组靶向效率,使 CRISPR 诱导的插入和缺失 (InDels) 减少了 7 倍,从而对杨树中基于 MKK2 的盐胁迫反应没有功能性影响。因此,这种方法不仅适用于杨树和植物或农作物,也适用于哺乳动物,以提高 CRISPR 介导的基因敲入效率。
植物从转基因树种或外来树种迁移到附近土地或通过与野生近缘种杂交而产生的基因流动是公众和监管机构关注的焦点。目前已存在许多减轻潜在基因流动的遗传策略;然而,开花开始的长期延迟严重制约了研究的进展。在通过 CRISPR 敲除杨树关键花基因 LEAFY 和 AGAMOUS 的同源物后,我们利用热诱导的 FT 过表达来加速对预期花表型的评估。我们选择了先前表征的 CRISPR-Cas9 诱导的双等位基因变化的事件,然后用在强组成型启动子或热诱导启动子控制下的拟南芥 FLOWERING LOCUS T (AtFT) 基因重新转化它们。我们成功地在杨树的雄性和雌性克隆中获得了开花,在花、分株和插入事件中观察到了各种各样的花序和花形态。总体而言,从选定的 LFY 和 AG 靶向事件中获得的花与这些基因功能丧失的预测一致。LFY 靶向事件显示具有叶状器官的小柔荑花序,AG 靶向事件具有嵌套花器官,与花确定性降低和缺乏形成良好的心皮或花药一致。这些发现证明了杨树花在遗传加速开花过程中具有很大的发育可塑性,这可能具有园艺价值。它们还提供了有关这两个基因靶标敲除后花表型和表观不育性的有益早期观察。