RMT:韵律计算素养工具 Dafydd Gibbon 韵律计算素养是声学语音学学生的重要目标,尤其是那些来自不富裕国家濒危语言社区的学生。有几种方便的“现成”韵律计算软件包,包括 Praat、ProsodyPro、Prosogram、ProZed、Winpitch 和许多方便的 Praat 脚本。但是,实验通常需要将这些软件包的功能与电子表格、R、Praat 脚本或 Python 进行小型混合交集。选择 Python 是为了能够将小型工具非混合、无缝地嵌入到更大的系统中进行探索性研究,因为它具有可扩展性,并且有大量的 Python 库可用于支持对过滤器和转换的深入洞察,而不是使用现成的复杂功能。工具包的设计标准是整体连贯性和结构清晰性。这些工具涵盖语音信号注释分析,以及语音信号幅度调制和频率调制解调的调制理论方法。通过提供距离测量和层次聚类技术,可以比较结果。该方法已在一系列出版物和教学中得到实践评估。
人造15.06.2014-30.07.2014练习Intoft Development&Consulting,Romania,Romania,http://wwwww.insoft-dc.ro/en主要活动:▪praat计划中的代码开发▪声音信号处理中的代码开发http://www.icpe.ro主要活动:▪研究▪开发基于压电传感器的康复设备
表格和图表列表表 1:传统计算和量子计算...................................................................................................................... 15 表 2:Qbits 的潜力................................................................................................................................................ 16 表 3:组织控制措施(Praat,2018)辅以 DNB 良好实践(DNB,2019-2020)的绘图............................................................................................................................................. 27 表 4:针对使用传统计算机的攻击者和使用量子计算机的攻击者的算法(Muller & Van Heesch,2020)。 ........................................................................................................................... 37 表 5:数字安全系统:非对称密钥算法 .......................................................................................... 58 图 1:案例研究(Yin,2009) ........................................................................................................................ 8 图 2:传感器 1 的图形表示 ...................................................................................................................... 13 图 3:50 量子比特量子计算机 IBM ............................................................................................................. 14 图 4:转载自 Eimers,PWA,(2008)的《动态世界中会计师的意义》,第 7 页。自由大学。 ........................................................................................................................... 30 图 5:组织在量子计算方面的(风险)成熟度的图形表示。 ........................................................................................................................................................... 42 图 6:图形表示当前情况下组织迁移到量子安全组织时面临的挑战。 ........................................................................................................................... 46 图 7:转载自 Mosca, M. 和 Piani, M. (2020) 所著的《量子威胁时间线报告 2020》,第 7 页。全球风险研究所。 ................................................................................................................................... 59 图 8:易受攻击的密码术的快速扫描使用情况 (Muller, F., & Van Heesch, 2020) .............................................................. 60
Bentin, S., Mouchetant-Rostaing, Y., Giard, MH, Echallier, JF, & Pernier, J. (1999). 不同心理语言学水平上处理印刷文字的 ERP 表现:时间进程和头皮分布。认知神经科学杂志,11 (3),235 – 260。https://doi.org/10. 1162/089892999563373 Binder, JR, Desai, RH, Graves, WW, & Conant, LL (2009). 语义系统在哪里?对 120 项功能神经影像学研究的批判性回顾和荟萃分析。大脑皮层,19 (12), 2767 – 2796。https://doi.org/10.1093/cercor/bhp055 Boersma, P., & Weenink, D. (2018)。Praat:用计算机进行语音学研究。检索自 http://www.praat.org/ Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, AM, Bölte, J., & Böhl, A. (2011)。词频效应:回顾德语中频率估计选择的最新发展及其影响。实验心理学,58 (5), 412 – 424。https://doi.org/10。 1027/1618-3169/a000123 Cattaneo, Z.、Pisoni, A. 和 Papagno, C. (2011)。经颅直流电刺激布罗卡区可改善健康个体的语音和语义流畅性。神经科学,183,64 – 70。https://doi.org/ 10.1016/j.neuroscience.2011.03.058 Chouinard, PA、Whitwell, RL 和 Goodale, MA (2009)。侧枕叶和下额叶皮层在命名视觉呈现的物体时发挥着不同的作用。 Human Brain Mapping,30 (12),3851 – 3864。https://doi.org/10.1002/hbm.20812 Costafreda, SG、Fu, CHY、Lee, L.、Everitt, B.、Brammer, MJ 和 David, AS (2006)。对言语流畅性的 fMRI 研究的系统评价和定量评估:左下额叶回的作用。Human Brain Mapping,27 (10),799 – 810。https://doi.org/10.1002/hbm.20221 de Zubicaray, GI 和 Piai, V. (2019)。研究言语产生的空间和时间成分。《牛津神经语言学手册》。牛津:牛津大学出版社。 Devlin, JT、Matthews, PM 和 Rushworth, MFS (2003)。左下前额皮质的语义处理:功能性磁共振成像和经颅磁刺激相结合的研究。认知神经科学杂志,15 (1),71 – 84。https://doi.org/ 10.1162/089892903321107837 Duecker, F. 和 Sack, AT (2013)。刺激前假 TMS 有助于目标检测。PLoS One,8 (3),e57765。https://doi.org/10.1371/journal.pone.0057765 Epstein, CM、Lah, JJ、Meador, KJ、Weissman, JD、Gaitan, LE 和 Dihenia, B. (1996)。磁脑刺激侧向言语抑制的最佳刺激参数。神经病学,47 (6),1590 – 1593。https://doi.org/10.1212/WNL.47.6.1590 Epstein, CM, Meador, KJ, Loring, DW, Wright, RJ, Weissman, JD, Sheppard, S., … Davey, KR (1999)。经颅磁刺激期间言语停止的定位和特征。临床神经生理学,110 (6),1073 – 1079 https://doi.org/10.1016/S1388-2457(99)00047-4 Fiez, JA (1997)。语音学、语义学和左下前额皮质的作用。人脑映射,5,79 – 83 https://doi.org/10. 1002/(SICI)1097-0193(1997)5:2<79::AID-HBM1>3.0.CO;2-J Flitman, SS, Grafman, J., Wassermann, EM, Cooper, V., O'Grady, J., Pascual-Leone, A., & Hallett, M. (1998)。重复经颅磁刺激过程中的语言处理。神经病学,50 (1),175 – 181。https://doi.org/10.1212/WNL.50.1.175 Gough, PM、Nobre, AC 和 Devlin, JT (2005)。通过经颅磁刺激分离左下额叶皮质的语言过程。神经科学杂志,25,8010 – 8016。https://doi.org/ 10.1523/JNEUROSCI.2307-05.2005 Grogan, A.、Green, DW、Ali, N.、Crinion, JT 和 Price, CJ (2009)。第一和第二语言中语义和音位流畅能力的结构相关性。大脑皮层,19,2690 – 2698。https://doi.org/10。 1093/cercor/bhp023 Groppa, S., Werner-Petroll, N., Münchau, A., Deuschl, G., Ruschworth, MFS, & Siebner, HR (2012). 一种新颖的双位点经颅磁刺激范式,用于探测来自同侧的快速促进输入