图 1 模式 S 子网的功能元素.................................................................................................................2 图 2 ARINC 协议堆栈...............................................................................................................................3 图 3 基于 PC 的 ADLP.................................................................................................................................4 图 4 高级 ARINC 卡......................................................................................................................................5 图 5 软件架构.......................................................................................................................................11 图 6 FITAMS - ATN 模式 S 和 SDU....................................................................................................................30 图 7 ADS-广播和 DAPS.............................................................................................................................33 图 8 SVC 和模式 S 网关.............................................................................................................................35 图 9 应答器测试架.....................................................................................................................................39 图 10 应答器前面板.............................................................................................................................43 图 11 ADLP / TAR电缆................................................................................................................................47 图 12 DERA 数据链路测试台...................................................................................................................75 图 13 DFS 整体数据链路环境................................................................................................................81 图 14 DFS 子网络......................................................................................................................................84
自购买之日起,Ziatech Corporation 制造的产品享有针对材料、工艺和制造日期适用的公布规格缺陷的五年保修。在保修期内,Ziatech 将自行选择维修或更换有缺陷的产品,前提是客户将产品退回授权的 Ziatech 维修机构,费用自理。由 Ziatech 自行决定,因误用、滥用、疏忽、改造或未经授权维修而导致的产品(无论是意外还是其他原因)不在保修范围内。风扇和磁盘驱动器的保修期为两年,平板显示器的保修期为自购买之日起九个月。非 Ziatech 制造的其他产品和配件仅限于原始制造商提供的保修。易耗品(保险丝、电池等)和软件不在本保修范围内。在发货之日起 90 天内,如果软件磁盘介质被证实有缺陷,Ziatech 将予以更换。
应像其他任何电子设备一样根据需要更换电池。电池寿命根据您的植入物类型,覆盖植入物的皮肤厚度以及每天使用的程序而变化。您的声音处理器旨在为大多数用户提供使用锌空气电池时的一整天电池寿命。将其从头部(〜30秒)中删除后,它将自动进入睡眠模式。再次附加时,它将在几秒钟内自动再次打开。由于睡眠模式仍然会消耗一些功率,因此不使用时应关闭设备。
•基于定制的晶格PQC处理器,用于效率,硬件资源和灵活性•使用SIMD并行性进行效率计算•具有双标志路径的效率存储器访问•通过精细粒度重复资源的灵活性
AKLT状态是各向同性量子Heisenberg Spin-1模型的基态。它表现出激发差距和指数衰减的相关函数,并在其边界处具有分数激发。到目前为止,仅通过捕获离子和光子系统实验实现了一维AKLT模型。在这项工作中,我们成功地准备了嘈杂的中间量子量子(NISQ)ERA量子设备上的AKLT状态。尤其是,我们在IBM量子处理器上开发了一种非确定性算法,其中AKLT状态制备所需的非单生操作员嵌入到单一操作员中,并为每对辅助旋转旋转1 /2的额外的Ancilla Qubit带有附加的Ancilla Qubit。这样的统一操作员有效地由由单量子和最近的邻居CX门组成的参数化电路表示。与Qiskit的常规操作员分解方法相结合,我们的方法导致了较浅的电路深度,仅邻近邻居的大门,而原始操作员的忠诚度超过99.99%。通过同时选择每个Ancilla Qubit,以使其属于旋转|↑>的子空间,可以通过从最初的单元状态以及量子计算机上的旋转量中的旋转量中的初始产品状态以及随后对所有其他物理量进行录制来系统地获得AKLT状态。我们展示了如何通过减轻读数错误的IBM量子专业人员进一步提高实施的准确性。
量子相估计(QPE)是一种关键量子算法,已广泛研究它作为对未来易耐故障量子计算机进行化学和固态计算的方法。最近,几位作者提出了QPE的统计替代方法,这些替代方案对早期容忍设备有好处,包括较短的电路和更好的减轻误差技术的适用性。然而,缺乏对实际量子处理器算法的实验研究。在这里,我们对Rigetti超导处理器实施统计阶段估计。特别是,我们使用Lin和Tong [Prx Quantum 3,010318(2022)]算法的修改,并改善了Wan等人的傅立叶近似。[物理。修订版Lett。 129,030503(2022)]并应用一项变分兼容技术来减少电路深度。 然后,我们结合了减轻错误的策略,包括零噪声外推和减轻读数的读数和读数。 我们提出了一种从统计阶段估计数据中估算能量的新方法,发现相对于先前的理论界限,最终能量估计的准确性提高了1-2个数量级,从而降低了执行准确的相位估计计算的成本。 我们将这些方法应用于四个轨道中多达四个电子的活性空间的化学问题,包括应用量子嵌入方法,并使用它们在化学精度中正确估计能量。Lett。129,030503(2022)]并应用一项变分兼容技术来减少电路深度。然后,我们结合了减轻错误的策略,包括零噪声外推和减轻读数的读数和读数。我们提出了一种从统计阶段估计数据中估算能量的新方法,发现相对于先前的理论界限,最终能量估计的准确性提高了1-2个数量级,从而降低了执行准确的相位估计计算的成本。我们将这些方法应用于四个轨道中多达四个电子的活性空间的化学问题,包括应用量子嵌入方法,并使用它们在化学精度中正确估计能量。我们的工作表明,统计阶段估计具有自然的弹性,尤其是在缓解相干错误之后,并且可以达到比以前分析所建议的要高得多的准确性,这表明其作为早期耐故障设备的有价值的量子算法的潜力。
在量子处理器中,在所需量子比特之间设计并行、可编程操作的能力是构建可扩展量子信息系统的关键 1,2 。在大多数最先进的方法中,量子比特在本地交互,受与其固定空间布局相关的连接的限制。在这里,我们展示了一种具有动态、非局部连接的量子处理器,其中纠缠的量子比特在两个空间维度上以高度并行的方式在单量子比特和双量子比特操作层之间相干传输。我们的方法利用光镊捕获和传输的中性原子阵列;超精细态用于稳健的量子信息存储,激发到里德堡态用于纠缠生成 3–5 。我们使用这种架构来实现纠缠图状态的可编程生成,例如簇状态和七量子比特 Steane 码状态 6,7 。此外,我们穿梭纠缠辅助阵列,以实现具有十三个数据和六个辅助量子比特的表面代码状态 8 以及具有十六个数据和八个辅助量子比特 9 的环面上的环面代码状态。最后,我们利用这种架构实现了混合模拟 - 数字演化 2 ,并将其用于测量量子模拟中的纠缠熵 10-12 ,通过实验观察与量子多体疤痕相关的非单调纠缠动力学 13,14 。这些结果实现了长期目标,为可扩展量子处理提供了一条途径,并实现了从模拟到计量的各种应用。
随着复杂的数据处理和分析对于使城市、工厂、汽车和家庭变得更加智能和高效变得至关重要,网络边缘嵌入式设备上的人工智能 (AI) 正在迅速发展。图像中蕴含着丰富的信息,人类对此依赖甚深。计算机视觉 (CV) 和机器学习 (ML) 可以从信息密集型图像中提取含义,例如,一个人在哪里。CV 和 ML 在改进机器视觉的缺陷检测、机器人的视觉里程计和地图绘制、汽车的车道检测等用例方面具有无价的价值。身份识别、生物识别、跌倒检测和行为识别等以人为本的应用进一步推动了楼宇出入和公共安全应用对更智能的摄像头的需求。
在将产品发送至服务中心进行维修之前,我们建议您仔细检查本手册中包含的说明。检查安装是否正确。如果您仍然无法解决问题,请联系我们的 AEV SERVICE 技术支持进行澄清。如果问题很简单,电话解释可能就足够了。无论如何,只有在发送 RMA 退货授权号后,SERVICE AEV 才能接受设备。该编号必须包含在与维修退货单相关的文档中。我们还建议您提供对设备上发现的缺陷的详细说明,并可能包含与您在 AEV SERVICE 交谈过的人员的姓名。AEV 不接受包含运输费用的维修材料,在这种情况下,材料将被拒绝。
1新加坡国立大学量子技术中心,新加坡3科学驱动器2,新加坡117543 2量子量子信息和计算机科学和量子学院联合中心,NIST/马里兰州,马里兰州,马里兰州大学公园,20742,美国20742,美国3美国高性能计算研究所(IHPC)16-16 Connexis, Singapore 138632, Republic of Singapore 4 MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, Singapore UMI 3654, Singapore 5 National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore 6 School of Electrical and Electronic Engineering Block S2.1, 50 Nanyang Avenue, Singapore 639798,新加坡7物理学系印度理工学院 - 孟买,孟买,孟买400076,印度8量子信息卓越中心,计算,科学和技术卓越中心,印度孟买孟买,孟买,印度400076