专门研究长阅读的测序和表观遗传分析,我们使用牛津纳米孔技术,从多功能小兵到高通量的Promethion 24,在基因组组装中提供高分辨率,EDNA以及DNA甲基化研究。我们的设施也使用Bionano的Saphyr平台在结构变化检测中表现出色,从而发现全基因组的洞察力对复杂的遗传结构。
在发布时正确的信息。可能会发生变化。牛津纳米孔技术,车轮图标,Elysion,Epi2Me,Gridion,Minion,Mintion,Minknow和Promethion是注册的商标或牛津Nanopore Technologies PLC在各个国家 /地区的商标应用程序。本文所包含的信息可以受牛津纳米孔技术待定的专利或专利保护。所有其他品牌和名称都是其各自所有者的财产。©2025牛津纳米孔技术plc。保留所有权利。牛津纳米孔技术产品不适用于健康评估或诊断,治疗,缓解,治愈或预防任何疾病或病情。BR_1223(en)_v4_29Jan2025
使用不受长度限制的纳米孔读取(从短到超长),现在可以通过简单、简化的工作流程生成高质量的植物基因组组装。长纳米孔读取可以跨越大量重复或高度一致的序列和结构变体,而天然 DNA 测序可以捕获 PCR 无法访问的序列。在同一次测序运行中,还可以检测到表观遗传修饰以及规范碱基序列,从而从单个数据集提供多组学见解。多功能高输出 PromethION 设备使实验室能够扩展测序能力以适应不同规模、样本量和预算的项目,为不同的测序需求提供量身定制的解决方案。
开发非模型物种的高分子量 (HMW) 基因组 DNA (gDNA) 提取方案对于充分利用长读测序技术以生成有助于解答有关这些生物的复杂问题的基因组组装至关重要。获取足够的高质量 HMW gDNA 对这些物种来说可能具有挑战性,尤其是对于富含多糖的组织,例如来自葡萄藻属内物种的生物质。基于柱式 DNA 提取和生化裂解试剂盒的现有方案效率低下,并且由于生物质多糖含量的变化可能没有用。我们开发了一种优化的方案,用于从葡萄藻生物质中有效提取 HMW gDNA,以用于长读测序技术。该方案利用山梨糖醇作为初始洗涤步骤去除多糖,并产生浓度高达 220 ng/μL 的高纯度 HMW gDNA。然后,我们证明了从该方案中分离出的 HMW gDNA 适用于在 Oxford Nanopore PromethION 平台上对三种葡萄藻进行长读测序。我们的方案可用作在富含多糖的微藻中高效提取 HMW gDNA 的标准,并可适用于其他具有挑战性的物种。
药物基因组学 (PGx) 研究个体间基因组变异对药物反应的影响,从而有机会为每位患者量身定制给药方案。目前有针对性的 PGx 测试平台主要基于微阵列、聚合酶链式反应或短读测序。尽管这些检测在识别单核苷酸变异 (SNV) 和插入/缺失 (INDEL) 方面表现出巨大价值,但它们无法识别大的结构变异,也无法进行明确的单倍型分型以进行星号等位基因分配。在这里,我们使用 Oxford Nanopore Technologies 的自适应采样来丰富从药物基因组学知识库 (PharmGKB) 中提取的具有充分记录的 PGx 相关性的 1,036 个基因面板。通过评估与现有真实集的一致性,我们展示了对五个瓶中基因组参考样本的准确变异和星号等位基因调用。我们表明,最多可以在一个 PromethION 流动槽上复用三个样本,而不会显著降低变异调用性能,从而分别实现 99.35% 和 99.84% 的目标变异召回率和精确度。这项工作推动了纳米孔测序在临床 PGx 环境中的使用。
简介:血糖控制调节至关重要,因为高血糖会导致微娃娃和大环体并发症。越来越多的证据表明,高血糖通过DNA甲基化影响血管并发症的发展。目标:我们的目标是阐明1型直径(T1D)的个体中的分化甲基化基因座,他们没有表现出慢性二氧化物并发症的迹象,并在次级和最佳血糖控制管理之间进行比较分析。方法:该研究包括20名T1D参与者,年龄在13至21岁之间,T1D至少5岁。参与者的DNA是从血液样本中分离出来的,并根据糖化血红蛋白的平均值(HBA1C)汇总。参与者分为两组:HBA1C <7%(10个par ticipant)与HBA1C> 8%(10名参与者)。DNA甲基化。统计分析是用DSS的DSS进行差异分析,用于基因注释的AnnoTATR以及基因和基因组(KEGG)信号途径富集分析的京都百科全书DIA的群集式的。结果:在1802年基因中检测到了总共8385个差异甲基化位点,根据HBA1C组> 8%,包括4575次甲基化和3810 hy苄基化。这些基因富含48个KEGG信号通路。前五名的方法是磷脂酶D信号通路,磷脂酰肌醇信号通路,逆行内源性内源性大麻素途径,RAP1信号通路和内吞作用。