生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
特性由阵列的孔径决定。但是,由于稀疏阵列中的元素数量减少,平均旁瓣电平高于相同孔径的全采样阵列的预期值。假设主瓣幅度为 M,正如预期的那样,对于一个由 M 个标准化和完全局部化的元素组成的阵列,每个元素在主响应轴方向上贡献一个同相矢量。然而,在远离主响应轴的给定方向上,由于元素位置随机,矢量并不同相,而是表现出统计随机相位。单位矢量与随机相位相结合,产生一个均方根 (rms) 幅度为 rm 的旁瓣电平。因此,对于随机阵列,平均旁瓣与主瓣的功率比为 M/MI = 1/M (Lo, 1964, 1965)。
P-24 Dushyant Dubey Dydimic机械性能的添加短玻璃纤维增强PLA复合材料跨变量打印参数,由机器学习优化的印度技术学院优化的变量打印参数
缺乏深度学习模型的解释性限制了在临床实践中采用此类模型。基于原型的模型可以提供固有的可解释预测,但是这些预测主要是为分类任务而设计的,尽管医学想象中有许多重要的任务是连续的回归问题。因此,在这项工作中,我们介绍了专家:专门为回归任务设计的可解释原型模型。使用原型标签的加权平均值,我们提出的模型从分离到潜在空间中的一组学习原型的样本预测。潜在空间中的距离正规化为相对于标签差异,并且可以将每个原型视为训练集中的样本。图像级距离是从斑块级距离构建的,其中两个图像的贴片使用最佳传输在结构上匹配。因此,这提供了一个基于示例的解释,并在推理时间提供了补丁级的细节。我们演示了我们提出的两个成像数据集上的脑年龄预测模型:成人MR和胎儿超声。我们的方法实现了最先进的预测性能,同时洞悉模型的推理过程。
NASA Glenn研究中心的低温电子组一直在努力开发电动机控制电子产品,该电子设备将在40 K的温度下运行。该组进行了测试,以确定哪些电子组件将在如此低的温度下运行。然后,确定在低温下成功运行的组件被用于设计低温运动控制器电路。建立,评估和证明是在70 K处运行的原型电机控制器电路。接下来,Glenn Researchers计划在温度更低的温度下确定电路性能 - 降低到40K。
原型HTS电缆系统KévinBerger1) *,Gabriel Hajiri 1),Arnaud Allais 2),Jean-Maxime Saugrain 2),Nicolas Lallouet 2),Beate West 2),HervéCaron3),3),David Ferndelle 3),Saara Villagra 3),Saara Villagra 3),Saara villagra 3) 5),GrégoryBouvier 5)和LoïcQuéval6.7)1)1)洛林大学,绿色,F-54000 Nancy,France,2)法国,法国,3)电气牵引力,SNCFRéseau,SncfRéseau System, Grenoble, France, 6) University of Paris-Saclay, Centraleupelec, CNRS, Electric Engineering and Electrotechnical Laboratory of Paris, 91190 Gif-sur-Yvette, France, 7) Sorbonne University, CNRS, Laboratory of Electric and Electrotechnique de Paris, 75252 Paris, France The Superrail Project, Government, Will Be the First Installation of A高温超导(HTS)电缆系统在商业运行的铁路电网上(1)。该项目的目标是在巴黎的蒙帕纳斯火车站开发,制造,安装和操作HTS DC电缆系统。HTS技术在这里提供了唯一可行的解决方案,可以将铁路变电站的电源增加到人口稠密地区的一组铁路轨道,从而加强和保护铁路网格,并为实现国家低甲板目标做出贡献。两个60 m长的1.5 kV-3.5 ka HTS直流电缆由2G导体制成。它们旨在满足严格的负载图要求,并在67 ka-200毫秒的短身上维持。34,否。3,pp。在Montparnasse安装之前,在SNCF铁路测试机构(SNCF-AEF)安装和测试了完整的35 m HTS电缆类型测试环。该系统包括两个终止,一个关节和一个冷却系统。本文提供了类型测试环和综合测试结果的详细说明,包括多个冷却周期,词汇下的稳态操作,高压承受,以及过电流的断层行为。结果证实了电缆系统符合其设计规格,将其符合超级栏杆安装和未来铁路项目的资格。参考文献:1)A。Allais等人,“将安装在法国铁路网络上的SuperRail-World-First HTS电缆”,在Applied Superconductivi Ty,第1卷中的IEEE交易中。1-7,2024年5月,第1号。4802207,doi:10.1109/tasc.2024.3356450。关键字:冷却系统,铁路网络,超导电缆,涡轮布雷顿技术,资格测试。通讯作者 *:kevin.berger@univ-lorraine.fr
摘要 - 可润滑的天线(RA)是一种具有巨大潜力来利用额外空间自由度(DOF)的新兴技术,它通过灵活地改变每个天线的三维(3D)方向/无视。在此演示中,我们开发了具有RA支持的无线通信系统的原型,该原型具有视觉识别模块,以评估RA在实用环境中提供的绩效增长。尤其是通过对数字伺服电机,定向天线和微控制器进行机械驱动的RA的开发,该电动机能够动态调整RA方向。此外,RA的方向调整是由目标识别模块提供的目标的方向指导的,从而显着提高了系统响应速度和定向精度。实验结果表明,与常规的基于固定天线的系统相比,基于RA的通信系统在通信覆盖效果方面取得了出色的改进。索引术语 - 可润滑的天线,视觉识别,3d orimitation。
双曲线空间已成为一种有效的歧管,因为它们有效地表示层次数据结构的能力,即使对于低维嵌入也很少,它们也几乎没有变形。在选定的双曲线模型(例如庞加莱球)中,分类通常是通过利用符号距离函数到平面(陀螺仪)(陀螺仪)的双曲线函数或通过测量与虚拟固定原型的比对来进行的。我们在深度学习的环境中提出,以利用决策边界的不同表征:霍斯斯,它们是Busemann功能的级别。它们在几何上等效于在类似于原型的虚拟点上与双曲线空间边界相切。因此,我们定义了一个可以适应任何神经网络主链的新霍斯磷层。在以前的作品中,原型通常是均匀分布的,而无需对手头任务使用潜在可用的标签层次结构。我们还提出了一种基于Gromov-Wasserstein距离定位这些原型的层次知情方法。我们发现,原型的良好初始化和优化的组合改善了在层次数据集上的图像分类以及在图像和点云数据集中进行的两个序列分割任务中的基线性能。源代码将在接受后发布。
少量学习 (FSL) 是从少量训练示例中学习识别以前未见过的图像类别的任务。这是一项具有挑战性的任务,因为可用的示例可能不足以明确确定哪些视觉特征最能体现所考虑类别的特征。为了缓解这个问题,我们提出了一种额外考虑图像类别名称的方法。虽然之前的工作已经探索过类名的使用,但我们的方法在两个关键方面有所不同。首先,虽然之前的工作旨在直接从词嵌入中预测视觉原型,但我们发现通过分别处理视觉和基于文本的原型可以获得更好的结果。其次,我们提出了一种使用 BERT 语言模型学习类名嵌入的简单策略,我们发现该策略大大优于之前工作中使用的 GloVe 向量。此外,我们提出了一种处理这些向量高维性的策略,该策略受到跨语言词嵌入对齐模型的启发。我们对 miniImageNet、CUB 和 tieredImageNet 进行了实验,结果表明我们的方法能够持续提高基于度量的 FSL 的最新水平。
1 都灵理工大学电子与电信系,意大利都灵 10129;jorge.tobon@polito.it (JATV);giovanna.turvani@polito.it (GT);david.rodriguez@polito.it (DOR-D.);mario.casu@polito.it (MRC) 2 意大利国家研究委员会环境电磁传感研究所,意大利那不勒斯 80124;scapaticci.r@irea.cnr.it (RS);crocco.l@irea.cnr.it (LC) 3 那不勒斯费德里科二世大学电气工程与信息技术系,意大利那不勒斯 80125;gbellizz@unina.it 4 巴黎电气工程组 (GeePs)、法国国家科研中心、中央理工高等电力学院、巴黎南部大学、Univ.巴黎萨克雷大学,索邦大学,91190 伊维特河畔吉夫,法国; nadine.joachimowicz@paris7.jussieu.fr 5 Laboratoire des Signaux et Systèmes (L2S), Université Paris-Saclay, CNRS, CentraleSupélec, 91190 Gif-sur-Yvette, France; bernard.duchene@l2s.centralesupelec.fr 6 那不勒斯费德里科二世大学高级生物医学科学系,80131 那不勒斯,意大利; enrico.tedeschi@unina.it * 通讯:francesca.vipiana@polito.it
