导电金属通常会传输或吸收自旋电流。本文报告了将两层金属薄膜连接在一起可以抑制自旋传输和吸收的证据。我们研究了铁磁体/间隔层/铁磁体异质结构中的自旋泵浦,其中间隔层(由金属 Cu 和 Cr 薄膜组成)将铁磁自旋源层和自旋吸收层分隔开。Cu/Cr 间隔层在很大程度上抑制了自旋泵浦,即既不传输也不吸收大量自旋电流,尽管 Cu 或 Cr 单独传输了相当大的自旋电流。Cr 的反铁磁性对于抑制自旋泵浦并不是必不可少的,因为我们观察到 Cu/V 间隔层也有类似的抑制作用,其中 V 是 Cr 的非磁性类似物。我们推测,自旋透明金属的多种组合可能形成抑制自旋泵浦的界面,尽管其潜在机制仍不清楚。我们的工作可能会激发人们对理解和设计金属多层中的自旋传输的新视角。
蛋白质分子机器,也称为质子泵,是生物膜中最重要的元素。这些是膜蛋白,在所有生物体(包括某些病毒)中广泛代表和分布。他们有能力通过将质子从膜的一侧转移到另一侧来创建和维持电化学质子梯度。质子泵分为各种大型类别,它们在不同的能源的使用方面有所不同,每个能源具有不同的多肽组成和进化起源。蛋白质泵中泵送质子的自由能的来源可能是:富含能量的代谢物的化学能(F.E.,质子ATPases中),来自具有较低氧化还原电位的化合物的电子转移能量(在线粒体呼吸链链中)和光能(F.E.,f.e.,f.e.,f.e.,在视野蛋白质中)。质子泵中质子的转移通常是电源的。然而,也有同样重要的,甚至可能更重要的非电原质质子泵,例如胃粘膜的氢 - 氯荷ATPase或H + /K + ATPase,这主要负责胃含量的酸性胃含量。题为“质子泵:质子泵的抑制剂和激活因子”的新特刊,总共包括六项贡献:四个原始文章和2个评论。Siletsky S.A.和Borisov V.B.的评论[1]分析了末端呼吸氧化酶的活性位点中氧中间体的最新结构和功能研究,催化循环的特征以及这些Engymes的活性位点的特性。这些文章和评论提供了与质子泵有关的新信息,首先要了解它们催化的反应机制的基础知识,它们在细胞生理学方面的重要性以及细胞内信号传导的分子机制,并以其在医学中的应用而结束。尽管贡献不足,但它们仍涉及广泛的基本问题和应用问题,并提供了新信息:有关特定蛋白质质子泵的分子机制和催化特征(尤其是细胞色素氧化酶和ATP合成酶);关于细胞生理学的特征以及涉及质子泵的信号转导的调节和机制;以及关于使用药物的分子医学研究 - 胃H + /K + ATPase的质子泵的抑制剂。末端呼吸氧化酶在功能上相似但在结构和进化上包括两个主要不同的超家族:血红素 - 波波氧化酶(HCOS,包括线粒体的细胞色素氧化酶(COX))和BD -type type type cytotromes。所有这些都通过将氧气还原为水的四电子还原的催化反应结合在一起,该反应在没有活性位点的潜在危险活性活性氧(ROS)的形成和释放的情况下进行。这些真核生物和原核生物的这些膜酶转化了电子从细胞色素或奎尼尔转移到分子氧向跨膜质子梯度转移的化学键的能量。迄今为止,具有原子分辨率的三维结构与BD型氧化酶相反,HCOS不仅通过从膜的不同侧转移到催化中心,而且还因为氧化还原偶联的定向质子通过膜泵送的独特能力而产生质子动力。
摘要——实施可再生能源的趋势仍在上升。全球变暖和化石燃料造成的许多其他有害影响促使全世界转向可再生能源。水泵被认为是消耗传统柴油燃料提供的高功率的主要负荷。因此,光伏 (PV) 能源越来越多地用于水泵系统。该技术基于使用光伏阵列将太阳能转换为电能以运行直流或交流电机水泵。为了提高太阳能在水泵系统中的利用率,本文提出了一种可行的光伏尺寸确定方法,以获得所需的光伏模块来覆盖水泵负载。所提出的方法是一种用户友好的工具,基于非技术用户输入的经济值。这项研究的主要目的是通过展示一个完全独立的光伏系统来弥补当前水泵系统光伏尺寸确定工具中发现的研究空白,该系统由太阳能电池阵列、逆变器、太阳能充电控制器和断路器以及电池组组成。此外,还计算了系统安装的总成本及其回收期。该研究讨论了该系统在埃及不同地理位置的性能。最后,测量了该系统节省的二氧化碳减排量。结果确保有效利用太阳能作为水泵系统的驱动能源。
磁性顺序。[7–20]铁磁层寄主非常相关的电子状态,这些状态会产生各种带状结构,包括金属,半导体或绝缘特性。[21–23]中,三锤铬[24-40](CRX 3)显示出由Cr D-Shell Electrons驱动的独特电子特性,这些特性同时促进了Cr-Cr – Cr Ferromagnetic耦合,宽带隙,宽带隙,宽大的界限和强度限制了confitoctonic状态。因此,CRX 3晶体的磁化状态与它们的磁光特性密切相关。fer- romagnetism诱导的滞后光学信号。These results unveiled ferromagnetic coupling between the Cr spins within a monolayer plane with easy axis magnetization ori- ented out-of-plane for CrBr 3 and CrI 3 and in-plane for CrCl 3 , thickness-dependent interplane ferromagnetic and antiferro- magnetic coupling in CrI 3 multilayers as well as light-mediated ferromagnetic response in doped transition metal二分法。[43–45]不幸的是,这些光学方法仅用作磁化探针,而磁性态和光激发之间的相互作用仍未开发。
摘要 那些希望减少对外国能源的依赖并防止破坏自然的国家正在增加对可再生能源的投资。随着对绿色能源发电的需求不断增加,世界各地的专家都在尝试用更好的方法发电。雨水收集也可以是一种非传统能源,就像风能和太阳能一样。即使是小规模发电,也可以减少对环境有害且成本高昂的能源生产方法。到目前为止,人们已经做出了各种努力来利用雨水发电,雨水是世界上最丰富的资源之一;然而,这可能是最引人注目的研究之一。这项研究的目标是在降雨量大但电力稀少的地区利用雨水发电。就发电量而言,雨滴永远无法与水力发电站竞争。然而,它们有一个显著的优势——它们是免费的。随着能源价格的上涨和新技术的发展,雨能的商业化利用似乎并不遥远。太阳能电池和泵电-雨水系统产生的能量减少了 572 美元的可变电力成本。在研究中以抽水雨水库为代表的能源存储维度中,经济效益潜力非常低。建议尽量减少运营成本,最大限度地提高存储容量和效率,并将填充和卸载时间控制在大约一小时。关键词可再生能源;雨水;抽水蓄能;太阳能光伏;能源存储;优化
摘要.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
DOI:https://dx.doi.org/10.30919/esee8c693 光伏/电池/超级电容器抽水系统的实验评估及其在多变天气条件下的潜力 Madhumita Das,1,* Asim Halder 1,# 和 Ratan Mandal,2,# 摘要 研究人员经常使用电池来消除太阳能抽水系统中天气变化的影响,因为天气变化会缩短电池寿命。超级电容器和电池储能技术相辅相成。超级电容器具有高功率密度,而电池具有高能量密度。超级电容器的集成可以增强光伏 (PV)/电池系统的性能。在这项工作中,使用离心泵在多变的天气条件下(晴天、多云天和多云天)对 PV/电池/超级电容器抽水系统进行了实验测试。实验使用 40 Wp 太阳能模块为 12 V、14.4 W 离心泵以及 12 V、9 Ahr 电池和 210 F、12 V 超级电容器组供电。演示了电池和超级电容器之间的电流分布。研究了阳光辐射波动对流量和电池/超级电容器充电放电特性的影响。该系统在部分阴天运行有效,从而提高了抽水系统的性能。该抽水系统提高了农业应用中光伏系统的效率。
晶体材料、石榴石或掺杂稀土的顺磁玻璃,因此不适合大面积和体积成像。[4] 氮空位 (NV) 中心对磁场具有高灵敏度(单个 NV 中心的灵敏度约为 1 nT Hz −1/2 量级),[5] 但 NV 的光学截面较弱,需要高分辨率检测其发射波长,并且校准困难。[6] 磁成像应用将受益于生物相容性材料(如分子或纳米颗粒)内更强的光磁相互作用,这些材料可以直接掺入样品或生物测定中。[7] 理想情况下,用于磁成像的纳米材料还能够进行高分辨率成像和在高光子通量下操作,甚至可能在微激光器中实现,其明亮的发射和高光谱灵敏度为以细胞分辨率监测各种生理参数创造了新的机会。 [8] 荧光或电致发光材料中的新光磁效应可用于调制激光,甚至可能在光调制器中找到新的应用,而光调制器目前依赖于弱热效应或电光效应。鸟类对地球磁场敏感性的解释为传统磁光材料提供了一种替代品。最近的研究表明,鸟类能够利用其视网膜中电子相互作用的磁敏感性来适应地球磁场。[9,10] 鸟类视网膜中蛋白质的光激发会产生自由基(不成对电子)中间态,然后这些中间态与自旋为 1 的激子(电子-空穴对)相互作用,后者也称为三重态激子。为了解这些相互作用的磁依赖性基础,考虑一个不对称分子,对于该分子,即使在没有磁场的情况下,自旋为 1 的激子的三个三重态也会在能量上分裂。通常,在没有显著的自旋轨道耦合的情况下,这种零场分裂小于约 10 μ eV。[11] 因此,一个数量级为 10 μ eV μ B − 1 ( ≈ 0.2 T) 的外部磁场(其中 μ B 是玻尔磁子)可以通过塞曼效应重新排序三重态,从而调节它们在自旋相关相互作用中的参与。对于没有零场分裂的未配对电子,磁场灵敏度通常更高。因此,三重态-三重态和三重态-电荷相互作用都可以经历磁场调制。鉴于其
波状模式在生命体中普遍存在,包括肠道蠕动[1]、蠕虫类生物的波动性运动[2]或心动周期[3]等日常现象,以及纤毛和鞭毛跳动[4]、基因振荡[5]或反应扩散模式[6]等微观波。这些模式的功能各不相同,但值得注意的是,它们往往与运输或运动直接相关。每个系统都有不同的振荡特征,例如体形[7]或分子浓度[8],但所有系统都由一组有限的波参数所支配——波长、振幅和频率。此外,参数选择受到物理或生物约束的限制。在给定约束的情况下,生命系统会使用哪些策略来实现波的功能?环境变化对生命系统提出了挑战,要求它们在有限的波参数下改变波的动力学,同时还要保持在波的约束范围内。例如,线虫秀丽隐杆线虫根据环境的粘弹性,通过调节其波浪形身体的波动波长、振幅和频率来改变其运动方式[9]。然而,这种适应性与波的能量成本的变化相伴而生,而这往往是生命的最大限制[10,11]。虽然正弦波形提供的可调整参数很少,但一些生命系统却使用波的叠加。例如人类肠道的蠕动收缩[12]或人类精子的鞭毛跳动[13]。多种波的叠加可以调节总波形,从而增加