降低CMOS技术尺寸并使数字设备更便携的过程,面临着诸如增加频率和减少功耗等严重挑战。因此,科学家正在寻找一种解决方案,例如用其他技术替换CMOS技术,包括量子点蜂窝自动机(QCA)技术,许多研究通过使用QCA技术设计了数字电路。触发器是大多数数字电路中的主要块之一。在本文中,QCA技术中提出了D型触发器(D-FF),其大多数门已在其反馈路径中用于重置。D-FF是由提出的D闩锁设计的,该闩锁基于NAND-NOR-逆变器(NNI)和一个新的逆变器门,该逆变器门具有24个单元格和0.5时钟循环延迟和0.02μm2面积。D-FF的新逆变器门具有高极化水平,面积较高,比以前的逆变器较低,而D-FF的NNI门是通用门。D-FFS带有复位引脚的应用之一是使用相频率检测器(PFD)。在拟议的方案中,由于可以设计PFD结构,因此已将重置功能添加到D-FF中。通过Qcadesigner软件评估所有提出的方案,并使用QCAPRO软件估算所有提议的电路的能源消耗模拟。
本文的其余部分组织方式如下:第 2 部分重点介绍了之前提出的存储单元,即现有的 QCA RAM 设计。第 3 部分涉及使用简单多路复用器的新建议的 RAM 布局。这种多路复用器过去曾被推荐过,现在正在考虑用它来设计所提出的 RAM 结构。第 4 部分讨论了模拟结果以及对所建议结构的评估。第 5 部分讨论了基于 QCA RAM 架构的多路复用器的功耗研究。结论包含在本文的第 6 部分中。
在本文中,我们提出了一种一维量子电动力学 (QED) 的离散时空公式,以量子细胞自动机 (QCA) 的形式表示,其本质上是局部量子门的平移不变电路。从实用角度来看,QCA 定义了一种用于相互作用 QFT 动力学的量子模拟算法(不过,先不考虑状态准备和测量问题)。但是,从理论角度来看,它也构成了一个原理证明,表明相互作用 QFT 的原生离散公式是可能且优雅的。在此图中,QFT 被定义为 QCA 的“收敛”序列,由时空格子间距参数化——与连续极限和重正化的概念相呼应。我们讨论了为什么我们希望以这种方式规避 QFT 标准公式的一些技术问题。这种构造直观,几乎不需要任何先决条件。它基于量子信息概念,建立了一个简单、可解释的量子场论模型。鉴于量子场论可能相当复杂,我们认为这也构成了重要的教学资产。
本文介绍了一种高效设计量子点细胞自动机 (QCA) 电路的新方法。所提方法的主要优点是减少了 QCA 单元的数量,同时提高了速度、降低了功耗并增大了单元面积。在许多情况下,需要将特定中间信号的效应加倍。最先进的设计利用一种扇出来实现这些,从而增加了单元数量,消耗了更多功率并降低了电路的整体速度。在本文中,我们介绍了单元对齐,以将某个信号的效果乘以二、三甚至更多。这可以被视为设计任何需要此属性的任意电路的新视角。此外,还介绍了一种新的共面交叉方法,该方法能够在两个连续时钟内进行共面交叉,最坏情况下需要一个旋转单元。为了证明所提想法的有效性,我们设计了一个新的全加器单元和一个新的进位纹波加法器(4 位),它提供更少的 QCA 单元数量以及更低的功耗和成本。
cli虫QCAS。QCA是经历离散时间演变的晶格系统。每个都由两件事确定:每个晶格站点上的局部希尔伯特空间和统一的时间进化操作员(或自动化)。在海森伯格图片中,我们可能会将后者写为一组可逆的“规则” [28],用于每个站点上的本地操作员的发展。我们考虑了一种称为Cli效率量子蜂窝自动机的特定模型系统[38 - 40]。这些QCA生活在空间中有限的1D晶格上,并遵守翻译不变性。每个晶格位点的希尔伯特空间源于量化环形相空间,因此每个lo-cal Hilbert空间都是有效的[41]。我们将此维度表示为n。此外,普朗克常数尺度为1 /n [40],因此n→∞是半经典的极限。作用于每个当地希尔伯特空间的操作员建立了Q,p:
可以将某些物理演化视为微观离散模型的突发有效结果。受经典粗粒化程序的启发,我们提供了一种遵循 Goldilocks 规则的粗粒化色盲量子细胞自动机的简单程序。该程序包括 (i) 将量子细胞自动机 (QCA) 在时空上分组为大小为 N 的细胞;(ii) 将细胞的状态投射到其边界上,并将其与精细动力学联系起来;(iii) 通过边界状态描述整体动力学,我们称之为信号;(iv) 为不同大小为 N 的细胞构建粗粒化动力学。这个简单的玩具模型的副产品是斯托克斯定律的一般离散模拟。此外,我们证明在时空极限中,自动机收敛到狄拉克自由哈密顿量。我们在这里介绍的 QCA 可以通过当今的量子平台实现,例如里德堡阵列、捕获离子和超导量子比特。我们希望我们的研究能够为更深入地理解这些分辨率有限的系统铺平道路。
AI-QCT = 人工智能定量冠状动脉计算机断层扫描;AUC = 受试者工作特征曲线下面积;NPV = 阴性预测值;PPV = 阳性预测值;QCA = 定量冠状动脉造影。
由于元件尺寸极小且功耗巨大,基于互补金属氧化物半导体 (CMOS) 技术的器件性能有限。确实,许多研究人员正在考虑如何使用低功耗方法在纳米级构建复杂的逻辑电路。为了降低设计密度并实现高速切换,有必要考虑 CMOS 替代品。量子点细胞自动机 (QCA) 是一种新型无晶体管范例,可用于创建具有高密度和太赫兹速度切换的纳米级器件。有许多参考文献 [1-3] 深入探讨了实验特性和物理实现(金属岛、半导体、磁性和分子 QCA)。第一个基于原始材料的功能量子单元刚刚建成 [4]。CMOS 技术的一个问题是它倾向于耗散大量电能。借助可逆计算,可以防止计算过程中的能量损失,这已被提出 [5]。研究证实了这一点。在可逆逻辑中,可逆门起着关键作用。研究界已提出了几种类型的可逆门 [5]。Toffoli 门因其可执行多种任务而得到广泛应用 [6-9]。
