业界越来越倾向于采用三维 (3D) 微电子封装,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(与 IC 表面正交)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层间时解析通孔磁场非常有利。两个导电层之间的高度差由磁场图像确定,并且与 PCB 设计规范一致。在我们最初使用 QDM 为复杂 3D 电路中的电流源提供更多 z 深度信息的步骤中,我们证明了由于麦克斯韦方程的线性特性,可以从整个结构的磁场图像中减去各个层的磁场图像。这允许从设备中的各个层中分离信号,该信号可用于通过求解 2D 磁逆来映射嵌入式电流路径。这种方法提出了一种迭代分析协议,利用神经网络对包含各种类别的电流源、隔离距离和噪声的图像进行训练,并结合 IC 的先验信息,
摘要 业界采用三维 (3D) 微电子封装的趋势日益增长,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(正交于 IC 表面)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层之间时解析通孔产生的磁场非常有利。两个导电层之间的高度差由磁场图像确定,并与 PCB 设计规范相符。在我们为以下提供进一步 z 深度信息的初始步骤中
� 自定义 processMax ® 以集成精益六西格玛 (LSS) 工具集并支持非软件产品 (EWDS、JATO) � 将 LSS 工具集集成到关键流程活动中 � 定量缺陷管理 (QDM) � 定量需求管理 (QRM) � 挣值管理 (EVM) � 因果分析和解决 (CAR)
� 自定义 processMax ® 以集成精益六西格玛 (LSS) 工具集并支持非软件产品 (EWDS、JATO) � 将 LSS 工具集集成到关键流程活动中 � 定量缺陷管理 (QDM) � 定量需求管理 (QRM) � 挣值管理 (EVM) � 因果分析与解决 (CAR)
摘要。Quantum密码学允许实现仅使用经典加密术的无法体现的安全目标:它提供了永恒隐私的承诺。也就是说,试图攻击协议的对手必须在协议运行期间取得成功。协议终止后,安全性无条件地保持。在这项工作中,我们启动了一种新模型的研究,我们称之为量子脱位模型(QDM)。在简而言之,该模型捕获了在协议运行期间(以及之后的一段时间)在计算上界限的对手,但在协议终止后很长时间就会成为计算无限的。重要的是,一旦对手变得计算无限,他只能记住在取消计算界限之前的界数。我们提供了通用合并性框架的一种变体,该框架捕获了量子反应的新概念,并用量子随机甲壳增强了量子。作为我们的主要贡献,我们构建了一个非交互承诺计划,该计划实现了针对恶意发件人的无条件和统计安全性,并根据我们的新安全概念对恶意接收者进行了永恒的安全。此类承诺意味着具有永恒安全性的一般安全多党计算。最后,我们证明我们的核心技术可以应用于更广泛的概率。我们表明,它在QDM中引起了永恒的公钥加密和OT。在我们构造的技术核心上是一种新的,概念上简单而强大的反向熵不确定性关系。最后,我们还考虑了在量子反应的设置中不可压缩加密的较弱概念,并表明Quantum Ind-CPA安全后安全的公钥加密足以实现此概念而不诉诸随机口腔。
隧道耦合对的光学活性量子点(QDMS)(QDMS) - 有可能结合出色的光学特性,例如具有延长相干时间的较高的光 - 三轴偶联(S-T 0)。使用两个旋转形成的S -T 0基本受到固有保护,以免电磁场和磁场噪声。但是,由于通常使用单个门电压来稳定点的电荷占用率并控制点间轨道耦合,因此在最佳条件下S-T 0码头的运行仍然具有挑战性。在这里,可以在需要时通过需要将电场可调QDM光学地充电。四相光学和电场控制序列促进了2H电荷态的顺序制备,并随后允许对跨点耦合的可触觉控制。电荷是通过光学泵和电子隧道电离加载的。分别达到(93.5±0.8)%和(80.5±1.3)%的单孔充电效果。结合了有效的电荷态制备和点间耦合的精确设置,可以控制几翼Qubits,这是按需生成2D光子簇状态或微波和光子之间的量子转导所必需的。
摘要:全球气候模型 (GCM) 是理解气候系统及其在情景驱动排放路径下演变趋势预测的重要工具。其输出结果被广泛应用于气候影响研究,用于模拟气候变化的当前和未来影响。然而,与气候影响研究所需的高分辨率气候数据相比,气候模型输出结果仍然较为粗糙,并且相对于观测数据也存在偏差。在现有的全球尺度上经过偏差调整和降尺度处理的气候数据集中,分布尾部的处理是一个关键挑战;许多此类数据集使用了分位数映射技术,而这些技术已知会抑制或放大尾部的趋势。在本研究中,我们应用分位数增量映射 (QDM) 方法 (Cannon 等,2015) 进行偏差调整。在偏差调整之后,我们应用一种名为“分位数保留局部模拟降尺度”(QPLAD)的新型空间降尺度方法,该方法旨在保留分布尾部的趋势。这两种方法都集成到一个透明且可重复的软件流程中,我们将其应用于耦合模式比较计划第六阶段 (CMIP6) 实验 (O'Neill et al., 2016) 的历史实验和四种未来排放情景(从积极缓解到无缓解)的全球每日 GCM 地表变量输出(最高和最低温度以及总降水量),即 SSP1-2.6、SSP2-4.5、SSP3-7.0 和 SSP5-8.5 (Ri-