摘要 — 将美国国家标准与技术研究所 (NIST) 生产的几种石墨烯量化霍尔电阻 (QHR) 器件与美国国家先进工业科学与技术研究所 (AIST) 的 GaAs QHR 器件和 100 Ω 标准电阻进行了比较。100 Ω 电阻与石墨烯 QHR 器件的测量值与通过 GaAs 测量获得的 100 Ω 电阻值的误差在 5 nΩ/Ω 以内。在 AIST 调整了石墨烯器件的电子密度,以恢复器件特性,使其能够在 4 T 至 6 T 的低磁通密度下运行。 此调整是通过 NIST 使用的功能化方法完成的,允许通过简单的退火对石墨烯 QHR 器件进行一致的可调性。这种方法取代了调整石墨烯以适应计量学的较旧且不太可预测的方法。里程碑式的成果表明,石墨烯可轻松用于在许多国家计量机构之间进行电阻比较测量。索引术语 — 量化霍尔电阻、外延石墨烯、低温电流比较器、电子密度、标准电阻
摘要 — 将美国国家标准与技术研究所 (NIST) 生产的几种石墨烯量化霍尔电阻 (QHR) 器件与美国国家先进工业科学与技术研究所 (AIST) 的 GaAs QHR 器件和 100 Ω 标准电阻进行了比较。100 Ω 电阻与石墨烯 QHR 器件的测量值与通过 GaAs 测量获得的 100 Ω 电阻值的误差在 5 nΩ/Ω 以内。在 AIST 调整了石墨烯器件的电子密度,以恢复器件特性,使其能够在 4 T 至 6 T 的低磁通密度下运行。 此调整是通过 NIST 使用的功能化方法完成的,允许通过简单的退火对石墨烯 QHR 器件进行一致的可调性。这种方法取代了调整石墨烯以适应计量学的较旧且不太可预测的方法。里程碑式的成果表明,石墨烯可轻松用于在许多国家计量机构之间进行电阻比较测量。索引术语 — 量化霍尔电阻、外延石墨烯、低温电流比较器、电子密度、标准电阻
多端器件的等效电路模型 [1] 已被用于探索 R H (量化霍尔电阻 (QHR))测量中的负载和接触电阻效应。主要观察结果是,由于强磁场中 QHR 器件 [2] 的接触(储层)和边缘状态之间的有效串联源电阻 r s = R H /2,从霍尔电压端子抽取的电流会导致显着的负载误差。1993 年,这些原理的计量应用通过在两个或多个器件之间设计具有多个链路的电路而建立 [3]。第一个链路承载大部分电流并在每个设备上设置等势边缘,因此霍尔电压互连具有小得多的负载电流。因此,在 QHARS 网络中,负载和直流接触电阻效应可以降低到可忽略不计的水平。同样,多重连接可最大限度地减少寄生负载对单个设备阻抗测量的影响,音频范围内 QHR 标准的开发也基于这一进步。
摘要——我们提出了一个比其他直接量子计量三角比较具有一些优势的实验。首先,通过使用可校准的低温电阻,量化霍尔电阻 (QHR) 标准只需在短时间内使用。其次,该实验不需要电压检测器。这消除了一个外部噪声源并允许快速电流反转。第三,主要比较系统中也没有可能导致过度噪声和超导量子干涉装置通量跳跃行为的反馈。该实验可以在更高的电流下运行,并且长时间无人监督,从而受益于噪声的统计降低。我们开发了一种低温电流比较器,用于直接根据 QHR 校准低温电阻。
摘要 本文描述了在现场测量量子霍尔电阻标准时对两种不同的数字阻抗电桥进行比较,目的是实现电容的 SI 单位法拉。在 EMPIR 联合研究项目 18SIB07 GIQS(石墨烯阻抗量子标准)中,德国联邦物理技术研究院 (PTB) 开发了一种约瑟夫森阻抗电桥,意大利国家计量研究所 (INRIM) 和都灵理工大学 (POLITO) 开发了一种电子数字阻抗电桥。前者基于约瑟夫森波形发生器,后者基于电子波形合成器。INRIM-POLITO 阻抗电桥被转移到 PTB,通过测量温控标准和石墨烯交流量化霍尔电阻 (QHR) 标准对这两个电桥进行了比较。 1233 Hz 下 10 nF 电容标准的校准不确定度在 PTB 电桥的 1 × 10 − 8 以内,INRIM–POLITO 电桥的不确定度在 1 × 10 − 7 左右。比较在综合不确定度内相互验证了两个电桥。结果证实,数字阻抗电桥允许从 QHR 实现 SI 法拉,其不确定度可与 BIPM 和主要国家计量机构的最佳校准能力相媲美。
单层外延石墨烯 (EG) 已被证明具有非常有利的特性,可继续推进量化霍尔电阻 (QHR) 标准 [1- 3]。由于基于 EG 的 QHR 器件会因大气分子掺杂剂的吸附而发生不可预测的载流子密度 (ne) 随时间漂移,因此了解如何在环境条件下稳定 ne 至关重要。这样的改进使这些设备易于使用,并延长其商业使用寿命。在电阻计量中,需要在易接近的磁通密度(B 场)下将 n e 控制在 1 × 10 11 cm -2 和 3 × 10 11 cm -2 之间的窄范围,以产生 R H = h /2 e 2 的电阻平台。尽管早期在控制 EG 器件中的 n e 方面的努力取得了一系列成功 [4-6],但要找到一种完全可逆的方法,同时仍保持 EG 的计量实用性,却非常困难。这项研究提出了一种解决方案,即 EG 器件即使在空气中长期储存也能保持恒定的低 n e 值。这种稳定性是通过使用三羰基铬 - Cr(CO) 3 对 EG 进行功能化来实现的。根据这些低而稳定的 n e 值,描述了一种可重复的 n e 调整过程(通过退火)[7],使最终用户更容易调整器件。
石墨烯器件中的量子霍尔效应最近允许使用稳健的电阻平台( R H = R K /2 = h /2 e 2 )作为欧姆的计量实现 [1]。未来传播欧姆的途径之一是通过构建能够提供多个量化电阻值的量子霍尔阵列电阻标准 [2]– [6]。在制造此类网络之前,必须降低接触和互连处的累积电阻。在本研究中,使用四端和两端方法测量和比较了外延石墨烯器件的量化霍尔电阻 (QHR)。当应用超导多串联接触时,不希望的电阻显著降低。这些新的设备接触几何形状和成分为下一代电阻标准的设计开辟了新途径。
量子霍尔效应 (QHE) 的研究需要使用同轴交流电桥将量子霍尔电阻 (QHR) 与音频频率下的可计算电阻标准进行比较 [1]、[2]、[3]。此类专用电桥经过优化,可在阻抗比较中提供最高精度 [4]。然而,这种高精度只能在有限的频率带宽内实现(通常在 500 Hz 和 5 kHz 之间),并且需要对电桥进行繁琐的手动平衡。只有少数尝试使用昂贵的自动感应分压器 (IVD) [5]、[6] 来实现交流同轴电桥的自动化。本文介绍了一种新型数字辅助电桥 [7]。精确的电压比仍由电压变压器提供,但是,通过调整数字源和检测器而不是 IVD 和锁定放大器,可以在更大的带宽(100 Hz 至 20 kHz)内自动完成精确比较阻抗所需的所有平衡。
外延石墨烯 (EG) 器件中的量子效应使得量子霍尔效应 (QHE) 电阻在 R H = R K / 2 = h /2 e 2 处达到稳定的水平,其中 R H 是霍尔电阻,R K 是冯·克利青常数 [1]–[3]。通过使用串联和并联连接作为构建块,我们可以构建量子霍尔阵列电阻标准 (QHARS),以提供多个量化电阻值 [4]–[9]。然而,基于多个量化霍尔电阻 (QHR) 器件的电阻网络通常会受到接触和互连处累积电阻的影响。在本文中,我们表明,通常在四个端子处测量以获得高精度的量化电阻也可以在应用超导分裂接触时通过消除不需要的电阻在两个端子处测量。虽然 QHE 器件的多串联 (MS) 互连已经得到了广泛的研究
1 阿尔托大学微纳米科学系,Micronova,Tietotie 3,02150,埃斯波,芬兰 2 联邦物理技术研究院,Bundesallee 100,38116 不伦瑞克,德国 3 MIKES,Tekniikantie 1,FI-02150,埃斯波,芬兰 电子邮件:novikov@aalto.fi,alexandre.satrapinski@mikes.fi 摘要 — 基于在 SiC 上生长的外延石墨烯膜的量子霍尔效应 (QHE) 器件已被制造和研究,以开发 QHE 电阻标准。霍尔器件中的石墨烯-金属接触面积已得到改进,并使用双金属化工艺制造。测试器件的初始载流子浓度为 (0.6 - 10)·10 11 cm -2,在相对较低的 (3 T) 磁场下表现出半整数量子霍尔效应。光化学门控方法的应用和样品的退火为将载流子密度调整到最佳值提供了一种方便的方法。在中等磁场强度 (≤ 7 T) 下对石墨烯和 GaAs 器件中的量子霍尔电阻 (QHR) 进行精密测量,结果显示相对一致性在 6 · 10 -9 范围内。索引术语 - 外延石墨烯、石墨烯制造、接触电阻、精密测量、量子霍尔效应。