信息图被用来讨论两种不同信息测度之间的关系,如冯·诺依曼熵与误差概率[1],或冯·诺依曼熵与线性熵[2]。对于线性(L)熵和冯·诺依曼(S)熵,通常对任何有效的概率分布ρ绘制(L(ρ),S(ρ))图。这里,ρ也可以表示量子系统的密度矩阵(或者更确切地说是具有其特征值的向量),这也是本文的主要兴趣所在。我们特别关注由此产生的信息图区域的边界,其中相关的概率分布(或密度矩阵)将被表示为“极值”。在参考文献[3]中,对两个量子比特的熵进行了比较(有关离子-激光相互作用的情况,另见[4])。在 [5] 中,对任意熵对的信息图进行了详细研究。文中证明了,对于某些条件(线性、冯·诺依曼和雷尼熵满足),极值密度矩阵始终相同。文中给出了反例,但一般来说,偏差会非常小,并且可以安全地假设这些极值密度矩阵具有普适性。在本文中,我们将使用信息图来获取对称多量子系统中粒子纠缠的全局定性信息,该系统由广义“薛定谔猫”(多组分 DCAT)态(在 [6] 中首次引入,作为振荡器的双组分偶态和奇态)描述。这些 DCAT 态原来是 U(D)自旋相干(准经典)态的 ZD−12 宇称改编,它们具有弱重叠(宏观可区分)相干波包的量子叠加结构,具有有趣的量子特性。为此,我们使用一和二量子Dit 约化密度矩阵 (RDM),它是通过从由 cat 态描述的 N 个相同量子Dit 的复合系统中提取一两个粒子/原子,并追踪剩余系统获得的。众所周知(见 [3] 及其参考文献),这些 RDM 的熵提供了有关系统纠缠的信息。我们将绘制与这些 RDM 相关的信息图,并提取有关一和二量子Dit 纠缠的定性信息,以及相应 RDM 的秩,这也提供了有关原始系统纠缠的信息 [7]。我们将应用这些结果来表征 3 级全同原子 Lipkin–Meshkov–Glick 模型中发生的量子相变 (QPT),以补充 [ 8 ] 的结果。具体来说,我们已经看到,一和二量子 DIT RDM 的秩可以被视为检测 QPT 存在的离散序参量前体。本文结构如下。第 2 节回顾了信息图的概念,描述其主要属性,特别是关于秩的属性。第 3 节回顾了 U(D) 自旋相干态的概念及其 ZD−12 宇称适配版本 DCAT。在第 4 节中,我们计算了 2CAT 和 3CAT 的一和二量子 Dit RDM、它们的线性熵和冯诺依曼熵,绘制了它们并构建了相关的信息图。在第 5 节中,我们使用信息图提供有关 Lipkin–Meshkov–Glick (LMG) 模型中 QPT 的定性信息。第 6 节致力于结论。
1简介认证和表征量子系统的动态行为是物理学中的基本任务,通常通过量子过程断层扫描(QPT)来实现[CN97]。但是,QPT非常有资源密集型。例如,所有已知的方法用于学习任意n- Qubit统一操作员的经典描述(给定的黑框查询访问),都需要对单位[GJ14]进行ω(4N)查询。另一方面,如果我们要测试统一是否具有特定的特定属性,则可以显着降低这种复杂性。这自然会导致我们考虑理论计算机科学中研究良好的财产测试框架[GOL10,BY22]。属性测试的设置(在统一动态的背景下,与本文有关)如下:给定甲骨文访问1对单位运算符U及其逆U†的设置,我们的目标是确定您是否具有某个属性或与每个单位运算符的“远处” 2,使用少量的属性使用对Oracles的呼叫来满足每个属性。我们还允许算法以一些较小的概率输出不正确的答案。在此模型中已经研究了单一动力学的几种自然特性,例如通勤性,对角度,保利(Pauli)的成员身份等。,我们将有兴趣的读者转到Montanaro和De Wolf在量子属性测试[MDW16]的调查第5.1节中,以获取更多信息。像Montanaro和Osborne [Mo10]一样,我们将统一的K -Junta称为量子K -Junta,以将其与K -Junta Boolean函数(或简单的Boolean K -Junta)区分开来。我们对这里进行测试感兴趣的属性是作为k -junta:我们说,如果仅对n个qubits的k起作用,则n qubit unition U是k -junta(对于正式定义,请参见definition 2.2)。作为一种特殊情况,量子k -juntas的概念捕获了研究的良好测试问题,如果布尔函数f:{0,1} n→{0,1}是k -junta(cf.问题1.3)。
在经典密码学中,单向函数(OWFS)是最小的假设,而量子密码学中并非如此。引入了几种新的原语,例如伪兰顿单位(PRUS),伪andomfunction-likestate Generator(PRFSGS),PseudorandomState Generators(PRSGS),单向状态发电机(OWSGS),单向路线(OWNWAIGH),单向(Owpuzzs)(Owpuzzles)和EFAUZZS和EFAIRT。它们似乎比OWF弱,但仍然意味着许多有用的应用程序,例如私钥量子货币方案,秘密键加密,消息身份验证代码,数字签名,承诺和多方计算。现在,没有OWF的量子加密的可能性已经开放,该领域最重要的目标是建立它的基础。在本文中,我们第一次表征了具有元复杂性的量子加密原语。我们表明,当且仅当Gapk是弱量化的量子时,就存在单向拼图(Owpuzzs)。Gapk是一个有望的问题,可以决定给定的位字符串是否具有小的Kolmogorov复杂性。弱量化 - 平均强度意味着实例是从QPT可采样分布中采样的,对于任何QPT对手,其造成错误的可能性大于1 / poly。我们还表明,如果存在量子PRG,则GAPK是强烈的量子 - 平均水平。在这里,强烈的量化 - hardis是弱量化量的强度,其中对手犯错的概率大于1 /2 - 1 / poly。最后,我们表明,如果GAPK是弱经典的平均水平,那么就存在量子性(IV-POQ)的不可能证明。弱经典的平均雄硬与弱量子平均硬化相同,但对手是PPT。IV-POQ是捕获基于采样和基于搜索的量子优势的量子性证明(POQ)的概括,并且是Owpuzzs的重要应用。 这是量子优势基于元复杂性的第一个时间。 (注意:有两项并发作品,[KT24B,CGGH24]。)IV-POQ是捕获基于采样和基于搜索的量子优势的量子性证明(POQ)的概括,并且是Owpuzzs的重要应用。这是量子优势基于元复杂性的第一个时间。(注意:有两项并发作品,[KT24B,CGGH24]。)