量子计算机经常操纵在两个级量子系统上编码的物理Qubit。Bosonic Qubit代码通过将信息纳入无限二维的Fock空间的标子空间中,而脱离了这个想法。这个较大的物理空间提供了自然保护,以防止实验瑕疵,并允许玻体代码规避适用于受二维希尔伯特空间约束的状态的禁忌结果。通常以单个骨率模式定义了一个骨量子量子,但是寻找可以表现出更好性能的多模式版本是有意义的。在这项工作中,基于这样的观察,即猫代码生活在由有限数量的有限亚组索引的连贯状态的跨度中,我们考虑了居住在四个相干态的24个相干状态的两种模式概括,由二进制四面体组2 t索引。结果2 t-qutrit自然遗传了第2 t组的代数特性,并且在低损失方案中似乎非常健壮。我们启动其研究,并确定稳定器以及该玻感代码的一些逻辑操作员。
强相互作用系统中的量子信息动力学,即所谓的量子信息加扰,最近成为我们理解黑洞、奇异非费米液体中的传输以及量子混沌的多体类似物的共同线索。到目前为止,经过验证的加扰实验实现主要集中在由两级量子比特组成的系统上。然而,高维量子系统可能表现出不同的加扰模式,并且预计会使量子信息加扰速率达到推测的速度极限。我们通过实现基于超导量子三元组(三级量子系统)的量子处理器,迈出了访问此类现象的第一步。我们展示了通用两元组加扰操作的实现,并将其嵌入到五元组量子隐形传态协议中。测得的隐形传态保真度 F avg ¼ 0.568 0. 001 证实了即使在存在实验缺陷和退相干的情况下也存在扰乱。我们的远距传物协议与最近在实验室中研究可穿越虫洞的提案相关,它展示了在高维系统中编码信息的量子技术如何利用更大、更连通的状态空间来实现复杂量子电路的资源高效编码。
中级量子 (NISQ) 计算。NISQ 机制考虑了只有几十到几百个量子比特 (qubits) 和中等误差的近期机器。鉴于量子资源的严重限制,充分优化量子算法的编译对于成功计算至关重要。先前的架构研究已经探索了映射、调度和并行等技术,以扩展可能的有用计算量。在本文中,我们考虑另一种技术:量子三元组 (qutrits)。虽然量子计算通常表示为量子比特的两级二进制抽象,但量子系统的底层物理本质上并不是二进制的。虽然经典计算机在物理层面以二进制状态运行(例如,在阈值电压之上和之下剪切),但量子计算机可以自然访问无限的离散能级谱。事实上,硬件必须主动抑制更高级别的状态才能实现两级量子比特近似。因此,使用三级量子位只不过是选择增加一个离散能级,虽然代价是增加出错几率。先前对量子位(或更一般地,d 级量子位)的研究只发现,扩展量子比特可获得常数因子增益。总体而言,先前的研究 1 强调了量子位的信息压缩优势。例如,N 个量子比特可以表示为 N=log2ð3Þ 量子位,这会导致运行时间有 log2ð3Þ1:6 常数因子改进。我们的方法以一种新颖的方式使用量子位,本质上是使用第三状态作为临时存储,但是代价是每次操作的错误率更高。在这种处理下,运行时间(即电路深度或关键路径)渐近更快,计算的可靠性也得到了提高。此外,我们的方法仅在中间阶段应用量子三元操作:输入和输出仍然是量子位,这对于实际设备上的初始化和测量非常重要。2;3
三元量子处理器具有与传统量子技术相比的显着计算优势,利用Qutrits(三级系统)中量子信息的编码和处理。要评估和比较此类新兴量子硬件的性能,必须具有适用于高维希尔伯特空间的强大基准测试方法。我们演示了行业标准随机基准测试(RB)协议的扩展,该协议广泛用于Qubits,适用于三元量子逻辑。使用超导五个QUTRIT处理器,我们发现单Qutrit门的限制性低至2。38×10-3。通过交织的RB,我们发现该QUTRIT门误差在很大程度上受到天然(值类)栅极限制的限制,并使用同时的RB来充分表征交叉词错误。最后,我们将循环基准测试应用于两Qutrit CSUM门,并获得0的两Qutrit过程限制。82。我们的结果展示了一种基于RB的工具,可以表征QUTRIT处理器的总体性能,以及一种诊断未来QUDIT硬件控制错误的通用方法。
摘要。在本文中,提出了针对任意单Qutrit状态的联合远程准备计划。首先,我们介绍了如何以密度运算符的形式在理想环境中远程准备任意的单Qutrit状态。然后,我们研究了与Weyl oberators相对应的四种典型类型的3D Pauli样噪声的影响:Trit-plip,T型相频率,TRIT相 - 频率和在理想环境中的T-Depolarising。对于每种类型的噪声,我们计算和分析了有限度的结果。结果表明,当考虑到trit-plip,trit-phase频率和t-偏度噪声时,实现与噪声因子和目标状态的所有系数有关。然而,当考虑t阶段频率噪声时,实现仅与目标态的噪声因子和振幅系数有关。
该团队的量子冰箱由两个量子位组成:一个“热”量子,该量子与保持在5 k左右的热源连接和一个“冷” Qutrit,类似于量子,但具有三个量化的能量水平,该量子与低温器最冷的部分相连。热量子量子和冷qutrit的能量差距被仔细调整为第三个“加工”量子的量子(参与计算的量子)的量子,以实现它们之间的热量传递。如果加工量子盘会激发,其能量将与热量量子的量子量子结合起来,将冷Qutrit激发到其最高能级。作为这种能量交换的一部分,处理量子置量已重置为基础状态,以开始进行新的计算。激发QUTRIT的能量也将其排入低温恒温器,将其重置为最低的能级。
摘要 我们在基本热操作 (ETO) 框架内研究催化,利用此类操作的独特特征来阐明催化动力学。作为基础,我们建立了新的技术工具,以增强 ETO 状态转换规则的可计算性。具体而言,我们为量子系统和任意维数的特殊初始状态类提供了状态转换的完整表征。通过将这些工具与数值方法结合使用,我们发现通过采用小型催化剂(仅包括量子比特催化剂),可以显著扩大量子系统的状态转换集。这一进步显著缩小了 ETO 和一般热操作之间可达状态的差距。此外,我们将催化转变分解为时间分辨的演化,这对跟踪系统和浴之间的非平衡自由能交换至关重要。我们的研究结果为热力学中简单实用的催化优势的存在提供了证据,同时也为分析催化过程的机制提供了见解。
量子电池是用于存储能量的量子系统,以稍后由外部代理以工作形式提取以执行某些任务。在这里,我们通过通过反谐波拉曼构型获得的反杰伊斯卡明斯相互作用介导的碰撞模型来研究混合量子电池的充电。电池由两个不同的组件组成:固定的无限尺寸单量子系统(例如谐波振荡器)和小尺寸的流(例如Qutrits)。充电协议包括在外部能源的作用下,一次将谐波振荡器与流的每个元素与流的每个元素相互作用,而目标是分析谐波振荡器和QUTRIT的充电如何受流的相关性能的影响。
摘要:结果表明,由于其SL 2(c)字符品种与代数表面有关的某些有限呈现的组的表示理论。我们利用代数表面和相关拓扑工具的Enriques -Kodaira分类,以使此类表面明确。我们研究了SL 2(c)角色品种与拓扑量子计算(TQC)的连接,以替代Anyons的概念。Hopf链接H的角色是Del Pezzo表面F H(换向器的轨迹),是我们对TQC的看法的内核。QUTRIT和两Q Q Qubit的魔术状态计算,在我们以前的工作中衍生自从Trefoil结中,可以从HOPF链接看作是TQC。一些两者的bianchi组的特征品种以及奇异纤维的基本组〜e 6和〜d 4包含f h。表面biration等同于k 3表面是其特征品种的另一种化合物。
麦克斯韦的恶魔是信息控制的典型示例,这对于设计量子设备是必需的。在热力学中,恶魔是一个智能的存在,他利用信息的熵性来对储层之间进行激发,从而降低了总熵。到目前为止,麦克斯韦恶魔的实施很大程度上仅限于马尔可夫浴场。在我们的工作中,我们研究了使用超导电路平台通过非马克维亚效应来协助这种恶魔的程度。设置是通过恶魔控制的QUTRIT界面连接的两个浴室,仅当两个浴缸的整体熵被降低时,才允许激发转移。最大的熵减少是在非马克维亚政权中实现的,重要的是,由于非马克维亚效应,可以通过适当的时机优化恶魔性能。我们的结果表明,可以利用非马克维亚效应来提高量子麦克斯韦恶魔中的信息传输速率。