摘要。脑肿瘤分类是一项重要的任务,用于评估肿瘤并根据其类别选择治疗类型。脑肿瘤的诊断需要多种成像技术。然而,MRI 经常被使用,因为它提供更高的图像质量并使用非电离辐射。深度学习 (DL) 是机器学习的一个子领域,最近表现出令人印象深刻的性能,特别是在分割和分类问题方面。基于卷积神经网络 (CNN),本研究提出了一种混合深度学习网络 (HDLN) 模型,用于对多种类型的脑肿瘤进行分类,包括神经胶质瘤、脑膜瘤和垂体瘤。Mask RCNN 用于脑肿瘤分类。我们使用挤压和激励残差网络 (SE-ResNet) 进行脑肿瘤分割,这是一个带有挤压和激励块的残差网络 (ResNet)。使用公开的研究数据集测试所提出的模型进行实验分析,获得了 98.53% 的总体准确率、98.64% 的灵敏度和 98.91% 的特异性。与最先进的分类模型相比,所提出的模型获得了最好的准确率。对于多类脑肿瘤疾病,所提出的 HDLN 模型显示出其优于现有方法。
摘要。纵向成像能够捕获静态解剖结构和疾病进展的动态变化,并且患者特异性的病理学治疗更好。但是,检测糖尿病性视网膜病(DR)的常规方法很少利用纵向信息来改善DR分析。在这项工作中,我们研究了利用纵向性质的自我监督学习的好处,以诊断。我们比较了不同的纵向自我监督学习(LSSL)方法,以模拟疾病从纵向视网膜色眼底照片(CFP)进行疾病的进展,以使用一对连续考试来检测早期的DR严重性变化。实验是在有或没有那些经过训练的编码器(LSSL)的纵向DR筛选数据集上进行的,该数据集(LSSL)充当了持久的借口任务。Results achieve an AUC of 0.875 for the baseline (model trained from scratch) and an AUC of 0.96 (95% CI: 0.9593-0.9655 DeLong test) with a p-value < 2.2e-16 on early fusion using a simple ResNet alike architecture with frozen LSSL weights, suggesting that the LSSL latent space enables to encode the dynamic of DR progression.
摘要 —结构MRI和PET成像在阿尔茨海默病(AD)的诊断中起着重要作用,分别显示脑部的形态学改变和葡萄糖代谢变化。一些认知障碍患者在脑图像中的表现相对不明显,例如在临床上通过sMRI仍难以实现准确诊断。随着深度学习的出现,卷积神经网络(CNN)成为AD辅助诊断的宝贵方法,但一些CNN方法不能有效地学习脑图像的特征,使得AD的诊断仍然存在一些挑战。在本文中,我们提出了一种基于ResNet的用于AD诊断的端到端3D CNN框架,该框架融合了在注意力机制作用下获得的多层特征,以更好地捕捉脑图像中的细微差异。注意力图显示我们的模型可以关注与疾病诊断相关的关键脑区。我们的方法在对来自 ADNI 数据库的 792 名受试者的两种模态图像进行的消融实验中得到了验证,其中基于 sMRI 和 PET 的 AD 诊断准确率分别达到 89.71% 和 91.18%,并且优于一些最先进的方法。
在临床诊断中高度要求从脑部计算机界面(BCI)系统进行语音图像脑电图(EEG)信号的准确和自动分类。设计自动分类系统的关键因素是从原始输入中提取基本特征;尽管许多方法在该领域取得了巨大的成功,但它们可能无法处理来自不同接收领域的多尺度表示形式,因此阻碍了该模型获得更高的性能。为了应对这一挑战,在本文中,我们提出了一个新型的动态多尺度网络,以实现EEG信号分类。整个分类网络基于Resnet,输入信号首先通过短时傅立叶变换(STFT)编码特征;然后,为了进一步提高多尺度的特征提取能力,我们结合了动态多尺度(DMS)层,该层使网络可以从更精细的水平上学习来自不同接收场的多尺度特征。为了验证我们设计的网络的有效性,我们在BCI竞争II的公共数据集III上进行了广泛的实验,实验结果表明,我们提出的动态多尺度网络可以在此任务中实现有希望的分类性能。
阿尔茨海默病 (AD) 是一种脑部疾病,会显著降低患者的记忆和正常行为能力。通过应用多种方法来区分 AD 的不同阶段,神经影像数据已用于提取与 AD 各个阶段相关的不同模式。然而,由于老年人和不同阶段的大脑模式相似,研究人员很难对其进行分类。在本文中,通过添加额外的卷积层对 50 层残差神经网络 (ResNet) 进行了修改,以使提取的特征更加多样化。此外,激活函数 (ReLU) 被替换为 (Leaky ReLU),因为 ReLU 会取其输入的负部分,将其降为零,并保留正部分。这些负输入可能包含有用的特征信息,有助于开发高级判别特征。因此,使用 Leaky ReLU 代替 ReLU 以防止任何潜在的输入信息丢失。为了从头开始训练网络而不遇到过度拟合的问题,我们在完全连接层之前添加了一个 dropout 层。所提出的方法成功地对 AD 的四个阶段进行了分类,准确率为 97.49%,精确度、召回率和 f1 分数为 98%。
摘要。通过深度学习进行脑年龄 (BA) 估计已成为脑健康的强大而可靠的生物标记,但神经网络的黑箱性质并不容易洞察脑老化的特征。我们训练了一个 ResNet 模型作为 BA 回归器,该模型基于来自 524 人的小型横断面队列的 T1 结构 MRI 体积。使用逐层相关性传播 (LRP) 和 DeepLIFT 显着性映射技术,我们分析了训练后的模型,以确定与网络最相关的脑老化结构,并在显着性映射技术之间进行比较。我们展示了在衰老过程中对不同脑区相关性归因的变化。对脑区相关性归因的三部分模式出现了。一些区域随着年龄的增长而相关性增加(例如右侧颞横回);一些区域随着年龄的增长相关性降低(例如右侧第四脑室);其他区域在各个年龄段都始终相关。我们还研究了大脑年龄差距 (BAG) 对脑容量内相关性分布的影响。希望这些发现能够为正常大脑衰老提供临床相关的区域轨迹,以及比较大脑衰老轨迹的基线。
网络压缩由于能够减少推理过程中的内存和计算成本而得到了广泛的研究。然而,以前的方法很少处理残差连接、组/深度卷积和特征金字塔网络等复杂结构,其中多层的通道是耦合的,需要同时进行修剪。在本文中,我们提出了一种通用的通道修剪方法,可应用于各种复杂结构。特别地,我们提出了一种层分组算法来自动查找耦合通道。然后,我们基于 Fisher 信息推导出一个统一的度量来评估单个通道和耦合通道的重要性。此外,我们发现 GPU 上的推理加速与内存 2 的减少而不是 FLOPs 的减少更相关,因此我们采用每个通道的内存减少来规范重要性。我们的方法可以用来修剪任何结构,包括具有耦合通道的结构。我们对各种骨干网络进行了广泛的实验,包括经典的 ResNet 和 ResNeXt、适合移动设备的 MobileNetV2 以及基于 NAS 的 RegNet,这些实验都针对尚未得到充分探索的图像分类和对象检测。实验结果验证了我们的方法可以有效地修剪复杂的网络,在不牺牲准确性的情况下提高推理速度。
摘要 — 神经胶质瘤是成人常见的脑肿瘤类型,源自神经胶质细胞。尽管医学图像分析和神经胶质瘤研究取得了进展,但准确诊断仍然是一个挑战。神经胶质瘤通常可分为高级别(HG)和低级别(LG)。神经胶质瘤的准确分类有助于评估病情进展和选择治疗策略。虽然使用卷积神经网络(CNN)进行医学图像分类已取得显著成功,但对于 CNN 来说,准确对 3D 医学图像进行分类仍然是一项艰巨的任务。主要限制之一是 CNN 难以在 3D 体积分类中优化。在当前的工作中,我们通过引入 CNN 与长短期记忆(LSTM)网络的级联来应对这一挑战,以将 3D 脑肿瘤 MR 图像分类为 HG 和 LG 神经胶质瘤。从预先训练的 VGG-16 中提取特征并将其输入到 LSTM 网络中,以学习高级特征表示,从而将 3D 脑肿瘤体积分类为 HG 和 LG 胶质瘤。结果表明,与从 AlexNet 和 ResNet 中提取的特征相比,从 VGG-16 中提取的特征具有更好的分类准确率。
交通事故仍然是死亡,伤害和高速公路严重中断的主要原因。理解这些事件的促成因素对于提高道路网络安全性至关重要。最近的研究表明,预性建模在洞悉导致事故的因素方面具有效用。但是,缺乏重点放在解释复杂的机器学习和深度学习模型的内部工作以及各种特征影响事故词典模型的方式。因此,这些模型可能被视为黑匣子,而利益相关者可能不会完全信任他们的发现。这项研究的主要目的是使用各种转移学习技术创建预测模型,并使用Shapley值对最有影响力的因素提供见解。预测合格中伤害的严重程度,多层感知器(MLP),卷积神经网络(CNN),长期短期记忆(LSTM),残留网络(RESNET),EfficityNetB4,InceptionV3,InceptionV3,极端的Incep-Tion(Xpection)(Xpection)(Xpection)和Mobilenet和Mobilenet。在模型中,MobileNet显示出最高的结果,精度为98.17%。此外,通过了解不同的特征如何影响事故预测模型,研究人员可以更深入地了解导致事故的造成的范围,并制定更有效的干预措施以防止发生事故。
摘要 — 脉冲神经网络 (SNN) 通过离散二进制事件计算和传递信息。在新兴的神经形态硬件中,它被认为比人工神经网络 (ANN) 更具生物学合理性且更节能。然而,由于不连续和不可微分的特性,训练 SNN 是一项相对具有挑战性的任务。最近的工作通过将 ANN 转换为 SNN 在出色性能上取得了实质性进展。由于信息处理方面的差异,转换后的深度 SNN 通常遭受严重的性能损失和较大的时间延迟。在本文中,我们分析了性能损失的原因,并提出了一种新型双稳态脉冲神经网络 (BSNN),解决了由相位超前和相位滞后引起的失活神经元 (SIN) 脉冲问题。此外,当基于 ResNet 结构的 ANN 转换时,由于快捷路径的快速传输,输出神经元的信息不完整。我们设计了同步神经元 (SN) 来帮助有效提高性能。实验结果表明,与以前的工作相比,所提出的方法仅需要 1/4-1/10 的时间步骤即可实现几乎无损的转换。我们在包括 CIFAR-10(95.16% top-1)、CIFAR-100(78.12% top-1)和 ImageNet(72.64% top-1)在内的具有挑战性的数据集上展示了 VGG16、ResNet20 和 ResNet34 的最先进的 ANN-SNN 转换。