必须按照以下技术配置中给出的顺序列出技术要求。第二列应以“是”或“否”的回答描述您的合规性。如果“否”,第三列应提供偏差程度(请提供定量回答)。第四列应说明偏差的原因(如果有)。第四列可用于将您的工具与竞争对手的工具进行比较,或提供以下技术要求表中要求的详细信息。3. 作为一种选择,请提供可能的任何建议附件/附加组件的分项成本
图 1:(a) GaAs 核(蓝色)- Ge 壳(红色)NW 示意图,具有受控晶相:纤锌矿 (WZ)、闪锌矿 (ZB),具有堆垛层错 (SF) 区域。通过 RHEED 原位监测样品,以获得有关 GaAs/Ge NW 晶体结构的实时信息。在 WZ GaAs 生长期间(b)29 分钟(c)35 分钟和六方 Ge 生长期间(d)3 分钟(e)10 分钟,沿 [1-10] 方位角记录的 RHEED 图案。WZ 点以白色箭头突出显示。(f) 45° 倾斜 SEM 图像(二次电子对比度)显示 GaAs/Ge NW。比例尺为 1 m。
本研究探索了 SrF 2 在高取向热解石墨 (HOPG) 上的分子束外延 (MBE) 生长,重点介绍了生长形态、晶体结构和电子特性随温度的变化。使用原子力显微镜 (AFM)、反射高能电子衍射 (RHEED)、紫外光电子能谱 (UPS) 和 X 射线光电子能谱 (XPS) 对 SrF 2 /HOPG 界面进行了全面表征。光谱数据表明,氟化物与基底的化学相互作用在沉积过程中的每个沉积厚度和基底温度下都很弱,表明在范德华外延状态下生长。沉积在 HOPG 上的 SrF 2 纳米结构在晶体度和成分方面表现出独特的块状特征,即使在最初的生长阶段也是如此。值得注意的是,温度在驱动生长模式中起着至关重要的作用,从室温下树枝状岛的聚结转变为在较高温度(400 ◦ C)下沿 HOPG 梯田台阶边缘诱导近 1D 行。
传记 1999 年,Ir. G. (Gertjan) Koster 教授获得博士学位,论文题目为“脉冲激光沉积人工层状复合氧化物”。同年,他移居美国,加入斯坦福大学 Geballe 先进材料实验室的 Kapitulnik-Geballe-Beasley (KGB) 小组。2007 年,他加入了特温特大学 MESA+ 纳米技术研究所的无机材料科学小组,自 2019 年 12 月起担任该研究所的正教授。2014 年,他成为温哥华 QMI-UBC 的客座教授,自 2018 年起,他担任斯洛文尼亚 Joseph Stephan 研究所先进材料系 K9 的客座教授。他的研究重点是原子工程复合(纳米)材料的结构-性能关系,特别是薄膜陶瓷氧化物。对于薄膜合成,他开发了第一个时间分辨的 RHEED 系统,在脉冲激光沉积期间以高达 100 Pa 的高压运行。这项工作促成了一家初创公司的成立,他是该公司的顾问和讲师。目前的研究包括人造材料的生长和研究、缩小尺寸(纳米级)材料的物理学、金属-绝缘体转变和原位光谱表征。应用领域包括绿色 ICT 的功能材料、神经形态计算、氧化物与 CMOS 的集成、使用 X 射线光谱或 STEM-EELS(例如电池、催化)进行氧化物界面操作研究的模型系统。其他经验:
该项目首次采用氧化物分子束外延 (MBE) 来生长 KTaO ₃ (KTO) 薄膜。早期生长使用 (100) SrTiO ₃ (STO) 基材进行,以尝试微调生长参数。此外,还使用了通过炉加热的 TaO ₂ 亚氧化物源和通过电子束加热的 Ta 源,并分析和比较了它们各自的薄膜。通过反射高能电子衍射 (RHEED) 进行原位监测,以及通过原子力显微镜 (AFM) 和 X 射线衍射 (XRD) 进行生长后表征,可以在整个项目中进行表面和晶体分析。来自亚氧化物和电子束加热 Ta 源的薄膜显示出相似的晶体质量,然而,在亚氧化物生长的 KTO 表面上发现更高浓度的氧化物杂质。成功生长 KTO 后,使用稀土钪酸盐 (110) 衬底 GdScO ₃ (GSO) 和 DyScO ₃ (DSO),因为它们与 KTO 的“立方体对伪立方体”界面将分别产生理论上 0.55% 和 0.93% 的压缩应变。通过逆空间映射 (RSM),GSO 衬底在 KTO 薄膜上显示出相称的应变,而 DSO 衬底仅显示部分应变。总体而言,使用 MBE 生长 KTO 可实现高结晶质量,为 KTO 薄膜合成和铁电 KTO 分析指明了光明的未来。