人类CTLH/GID(HGID)复合物作为调节多个细胞过程的重要E3连接酶,包括细胞周期进程和代谢。但是,由HGID控制的生物学功能范围仍未开发。在这里,我们使用接近性依赖性生物素化(BioID2)来识别与HGID复合物相互作用的蛋白质,其中包括以口袋依赖性方式结合GID4的底物可以进行。生物化学和细胞分析表明,HGID GID4 E3连接酶结合并泛素化Arhgap11a,从而将此RhoGap靶向蛋白酶体降解。的确,GID4耗尽或阻碍使用PFI-7 In-Hibor的GID4底物结合袋稳定Arhgap11a蛋白质,尽管它没有功能性N末端DEGRON。有趣的是,GID4失活通过增加细胞外围的Arhgap11a水平而损害细胞运动,并导致细胞的运动,在该细胞周围会使RhoA失活。一起,我们确定了广泛的HGID GID4 E3连接酶亚曲线,并发现了通过靶向ARHGAP11A来调节细胞迁移的HGID GID4 E3连接酶的独特功能。
Oncomine Comprehensive Assay v3 DNA 组:AKT1、AKT2、AKT3、ALK、AR、ARAF、ARID1A、ATM、ATR、ATRX、AXL、BAP1、BRAF、BRCA1、BRCA2、BTK、CBL、CCND1、CCND2、CCND3、CCNE1、CDK12、CDK2、CDK4、CDK6、CDKN1B、CDKN2A、CDKN2B、CHEK1、CHEK2、CREBBP、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCA、FANCD2、FANCI、FBXW7、FGF19、FGF3、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、 FOXL2、GATA2、GNA11、GNAQ、GNAS、H3-3A、HIST1H1E、HNF1A、HRAS、IDH1、IDH2、IGF1R、JAK1、JAK2、JAK3、KDR、KIT、KNSTRN、KRAS、MAGOH、MAP2K1、MAP2K2、MAP2K4、MAPK1、MAX、MDM2、 MDM4、MED12、MET、MLH1、MRE11A、MSH2、MSH6、MTOR、MYC、MYCL、MYCN、MYD88、NBN、NF1、NF2、NFE2L2、NOTCH1、NOTCH2、NOTCH3、NRAS、NTRK1、NTRK2、NTRK3、PALB2、PDGFRA、PDGFRB、PIK3CA、 PIK3CB, PIK3R1、PMS2、POLE、PPARG、PPP2R1A、PTCH1、PTEN、PTPN11、RAC1、RAD50、RAD51、RAD51B、RAD51C、RAD51D、RAF1、RB1、RET、RHEB、RHOA、RICTOR、RNF43、ROS1、SETD2、SF3B1、SLX4、SMAD4、SMARCA4、SMARCB1、SMO、SPOP、SRC、STAT3、STK11、TERT、TOP1、TP53、TSC1、TSC2、U2AF1、XPO1
摘要 为探讨COVID-19与白塞氏病(BD)关系的潜在作用,寻找相关的生物标志物。采用生物信息学方法下载COVID-19患者外周血单核细胞(PBMCs)和BD患者PBMCs的转录组数据,筛选COVID-19与BD之间的共同差异基因,进行基因本体(GO)和通路分析,构建蛋白质-蛋白质相互作用(PPI)网络,筛选枢纽基因并进行共表达分析。此外,还构建了基因-转录因子(TFs)-miRNA网络、基因-疾病网络和基因-药物网络,以深入了解两种疾病之间的相互作用。我们使用了GEO数据库(GSE152418、GSE198533)中的RNA测序数据集。通过交叉分析获得461个上调的共同差异基因和509个下调的共同差异基因,绘制PPI网络,并利用Cytohubba筛选出关联最强的15个基因作为枢纽基因(ACTB、BRCA1、RHOA、CCNB1、ASPM、CCNA2、TOP2A、PCNA、AURKA、KIF20A、MAD2L1、MCM4、BUB1、RFC4、CENPE)。筛选出具有统计学意义的枢纽基因,发现ACTB在BD和COVID-19中均处于低表达状态,ASPM、CCNA2、CCNB1、CENPE在BD中处于低表达状态,而在COVID-19中处于高表达状态。随后进行GO分析和通路分析,获得共同的通路和生物反应过程,提示BD与COVID-19之间存在共同的关联。基因-TFs-miRNA网络、基因-疾病网络和基因-药物网络也在两种疾病的相互作用中发挥重要作用。COVID-19和BD之间存在相互作用。ACTB、ASPM、CCNA2、CCNB1和CENPE是两种疾病的潜在生物标志物。
p29。Isabelle Becker Megakaryocytes通过Rhoa Boston儿童医院和哈佛医学院P30的下游分泌自噬释放TGFβ1。Joyeeta Chakraborty化学基因植物,以定义Runx介导的转录调节电路Albert Einstein医学院P31。SETBP1中的Samantha Tauchmann突变增加了粒细胞谱系的输出,并激活与增殖相关基因骑士癌症研究所p32的转录。estelle carminita骨髓重塑和促炎性巨核细胞在波士顿儿童医院P33的慢性肾脏病鼠模型中。Nadia Carlesso上调造血干细胞中应力反应途径和镰状细胞疾病中的骨髓生态位。贝克曼研究所P34。sanika gupte中性粒细胞衍生的Sema4a是一种非细胞自动构成的骨髓骨膜自动调节剂,可保留髓样偏置的HSC的干性。弗雷德·哈钦森癌症研究中心P35。Daniel E. Kennedy DNMT3A功能丧失突变会损害感染期间贝勒医学院p36期间免疫记忆和先天细胞效应功能的发展。Alana M. Franceski芯片相关的外在因素,塑造健康的造血干细胞O'Neal综合癌症中心p37。Emily Tsao通过STAU1损失的转录后调节有助于DEL(20q)无序的造血性造血中心玛格丽特玛格丽特癌症中心和多伦多大学P38的造血细胞分化缺陷。patrick Stelmach突变特异性表型DNMT3A突变干细胞在克隆造血中心德国癌症研究中心Alexander Marr BRD4抑制作用在TET2突变的克隆造血的鼠模型中消除了炎症和自我更新。Alexander Marr BRD4抑制作用在TET2突变的克隆造血的鼠模型中消除了炎症和自我更新。
1。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2. 宾夕法尼亚州费城宾夕法尼亚大学生物工程系3. 圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2.宾夕法尼亚州费城宾夕法尼亚大学生物工程系3.圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。新泽西州格拉斯伯勒的罗文大学生物医学工程系6。化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。抑制剂在3小时的抑制剂清除之前,在反馈回路闭合之前,恢复了血管的生长,但在8小时时冲洗,比反馈时间尺度更长,在Vivo中为反馈动力学建立了上限和上限。从机械上讲,YAP和TAZ诱导了RhoA信号传导的转录抑制,以维持动态细胞骨架平衡。在一起,这些数据建立了
简介:周围动脉疾病(PAD)是糖尿病患者下肢截肢的主要危险因素。不幸的是,先前使用血管内皮生长因子(VEGF)研究治疗性血管生成的临床研究表明,糖尿病患者令人失望的结果,这引起了新型治疗剂的必要性。在缺氧条件下高度上调丙链夹系统(APJ受体/ apelin),并充当血管生成的激活剂。Apelin治疗可改善缺血的非糖尿病模型中的血运重建,但是,其在糖尿病疾病中的血管生成作用仍未得到研究。这项研究探讨了Pyr-Apelin-13对后肢缺血的内皮细胞功能和糖尿病小鼠模型的影响。方法:非糖尿病和糖尿病小鼠接受了股动脉连接以诱导肢体缺血。糖尿病小鼠皮下植入渗透泵28天的渗透泵28天。血流再灌注在手术后4周测量,并用自愿轮评估运动意愿。在体外,牛主动脉内皮细胞(BAEC)暴露于正常(NG)或高葡萄糖(Hg)水平和缺氧。 在VEGF或PYR-APELIN-13刺激下,进行了细胞迁移,增殖和管形成测定。 结果和讨论:与未经治疗的糖尿病小鼠相比,在接受PYR-APELIN-13的糖尿病小鼠中,肢体缺血,血流再灌注,肢体的功能恢复和血管密度得到改善。在体外,牛主动脉内皮细胞(BAEC)暴露于正常(NG)或高葡萄糖(Hg)水平和缺氧。细胞迁移,增殖和管形成测定。结果和讨论:与未经治疗的糖尿病小鼠相比,在接受PYR-APELIN-13的糖尿病小鼠中,肢体缺血,血流再灌注,肢体的功能恢复和血管密度得到改善。在培养的BAEC中,暴露于HG浓度和缺氧会降低VEGF的促血管生成作用,而Apelin促肌启启动效应仍未得到改变。pyr-apelin-13通过AKT/AMPK/ENOS和RHOA/ROCK信号通路在NG或HG浓度和低氧暴露下诱导其促血管生成作用。我们的结果将辅助系统确定为糖尿病患者血管生成治疗的潜在治疗靶点。
REQUEST FOR PROPOSALS The National Organization for Rare Disorders (NORD)'s Research Grants Program Announces a research grant opportunity for one grant up to $35,000 US for Arteriovenous Malformation (AVM) DEADLINE FOR INITIAL APPLICATIONS: October 16, 2023 (11:59 pm PT) NORD, with fundraising by the Tyler James Abizeid Foundation is accepting applications for one grant, up to $35,000 US, for scientific和/或与动脉畸形(AVM)有关的临床研究。动静脉畸形(AVM)是血管异常缠结,数量和大小变化,导致动脉和静脉之间的不规则连接。AVM在大脑或脊髓中最常形成,但可能发生在身体的许多不同部位 - 动脉和静脉存在。AVM会通过改变到达神经组织的氧气量,导致周围组织中的出血,并压缩大脑或脊髓的部分,从而造成脑或脊髓的损害。在大多数情况下,AVM的人会经历很少的,如果有任何症状,直到AVM破裂。AVM症状只有在对大脑或脊髓造成了一定损害后才发生,并且严重程度从轻微的头痛到出血性中风的破坏性破裂。其他身体症状可能包括癫痫发作,头部或头部两侧的疼痛,视觉问题,肌肉无力,言语问题,运动问题和异常感觉。神经系统症状取决于病变的位置,可能包括头晕,意识丧失,记忆缺陷,混乱,幻觉或痴呆症。AVM可以在生活中早期或晚期出现。除了动静脉畸形外,其他三种类型的血管病变还会影响中枢神经系统,包括海绵状畸形,毛细血管毛细血管扩张和静脉畸形。AVM的原因尚未得到充分了解,但是在胎儿发育过程中,AVM通常是先天性和形式。已知几种类型的AVM是遗传性的,并且具有遗传基础(包括遗传性出血性毛发性(HHT)(HHT),Sturge-Weber综合征和Klippel-Trenaunay综合征)。与AVM知识发展有关的一些当前研究包括:确定患有HHT的人的大脑内部出血的危险因素;测试β受体阻滞剂以评估其对HHT的影响;为AVM开发生物标志物;识别对脑AVM形成至关重要的分子途径;并测试与抑制CCM(脑畸形)发育和出血有关的RhoA/Rock蛋白信号传导途径。