我认为我们正处于人类历史的关键时刻。在过去的 10,000 年左右——自上一个冰河时代结束以来——我们有幸生活在异常温暖和稳定的气候中。在这种稳定的基础上,文明从狩猎/采集社会发展到农业、工业和信息社会。然而,我们现在面临着一个重大转折点,因为我们面临着威胁我们日常生活和未来的全球挑战,包括 COVID-19 大流行、全球变暖引起的气候变化以及悲惨的军事入侵。这些挑战的共同点是,它们从根本上与人类活动因科学技术而对世界产生的影响的放大有关。全球范围内的跨境合作对于解决这些问题至关重要。然而,通往有效国际合作的道路有时是艰难而曲折的,解决这些挑战并不容易。
我认为我们正处于人类历史的关键时刻。在过去的 10,000 年左右——自上一个冰河时代结束以来——我们有幸生活在异常温暖和稳定的气候中。在这种稳定的基础上,文明从狩猎/采集社会发展到农业、工业和信息社会。然而,我们现在面临着一个重大转折点,因为我们面临着威胁我们日常生活和未来的全球挑战,包括 COVID-19 大流行、全球变暖引起的气候变化以及悲惨的军事入侵。这些挑战的共同点是,它们从根本上与人类活动因科学技术而对世界产生的影响的放大有关。全球范围内的跨境合作对于解决这些问题至关重要。然而,通往有效国际合作的道路有时是艰难而曲折的,解决这些挑战并不容易。
2.活动 ①超导量子计算机 开发出独创的64量子比特全栈量子计算机。 • 开发出64量子比特量子计算机“A”,并将其实现云服务。 • 富士通开始运行基于“A”技术开发的第二台量子计算机。 • 大阪大学也开始提供使用RIKEN 64量子比特芯片的云服务。 ②光量子计算机 成功开发出光量子计算机 • 开发出可以在100MHz系统时钟下计算连续变量的线性代数运算的光量子计算机。 • 在应用研究方面,提供了由云系统和软件开发工具包组成的量子计算机平台。 ③半导体量子比特 实现高保真度硅5量子比特 • 通过减少量子设备中门操作的误差,实现了5量子比特的世界最高保真度(>99.99%)。 (常规>99.9%) ④量子计算理论与软件 开发了用于模拟大规模量子系统的量子电路设计方法 • 开发了一种通用的、实用的方法,使量子计算机能够在紧凑的量子程序中高效地模拟大规模量子系统。 • 能够以比以前高100倍的精度计算量子系统的动力学。
48 Cr是双光子发射计算机断层扫描的有前途的放射性同位素。1)提出的方法可以实现高空间分辨率和高信号噪声比。2)作为48 cr,一对112和308-kev Photons可用于重合成像。1)我们计划在46 Ti(α,2 N)48 Cr反应中产生48 Cr。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。 在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。 将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。 因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。 48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。 将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。 在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。 希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。 将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。在核医学中,必须将48 CR与目标材料和副产物进行化学分离。在这项研究中,我们使用51 cr(t 1 /2 = 27.7 d)的Nat Ti(α,Xn,Xn,Xn)51 Cr反应产生的51 cr(t 1 /2 = 27.7 d)的α-粒子辐照NAT TI(NAT =天然同位素丰度)靶标的无载液cr radiotracers的生产方法。将来,可以使用昂贵的46 Tio 2作为目标材料生产48 Cr。因此,我们还研究了CR放射性示踪剂生产后的目标材料的回收率。48,51 cr是在使用Riken AVF Cyclotron的Nat Ti(α,Xn)48,51 Cr Rections中产生的。将45 mg/cm 2的金属NAT TI板用28.9-MEV的强度为3.1粒子μA。在NAT Ti(α,X)48 V反应中还产生了48 V(T 1/2 = 16.0 D)的48 V(T 1 /2 = 16.0 D),并且作为电子捕获和β + -48 Cr的女儿(t 1/2 = 21.6 h)。希望在成像实验之前使用48 Cr的成像实验之前去除长期寿命的48 V,以增加信噪比。将辐照的NAT Ti板(63.4 mg)溶解在1 ml浓缩的HF(c。hf)和0.3 mL C的混合物中。 HNO 3通过加热,并将溶液蒸发至干燥。用1 ml的c溶解残留物。 HF加热,并将溶液蒸发至干燥。通过加热将残留物溶解在6 ml的4.5 m HF中。随后,将溶液馈入阴离子交换柱(Muromac 1x8,100-200 et chemes,10 mm i.d.×110毫米高)。用9 ml(1 ml×9)的4.5 m HF和35 mL(5 ml×7)的C洗涤树脂。 HF。组合了4.5 m HF的分数,并将3 mL用于ICP-MS测量,以确认NAT TI的污染。使用阳离子交换色谱法将4.5 m HF的其余部分蒸发至干燥,并进一步纯化48 V。将残基溶解在3 ml的0.5 m HNO 3中。溶液(1 mL×3)被送入阳离子交换柱(Muromac 50wx8,100-200 Mesh,5 mm I.D.×50毫米高)。用0.5 m HNO 3和5 ml(1 ml×5)的3 ml(1 ml×3)洗涤树脂,为6 m HNO 3。用GE检测器对阴离子和阳离子交换柱进行每个洗脱液进行γ射线光谱法进行了γ射线光谱法,以获得51 cr和48 V的洗脱曲线。以评估每个c的Nat Ti的洗脱曲线。 HF
a:sendai Campus(Miyagi)B:Tsukuba Branch(Ibaraki)C:Wako分支(总部,Saitama) I:神户分支(Hyogo)J:Harima Branch(Hyogo)
Ŷ Aalt University Ŷ Aalt University Ŷ Chalmers University of Technology Chalmers University of Technology Delft University of Technology Delft University of Technology Delft University of Technology Imec Imec Johannes Gutenberg University Mainz Johannes Gutenberg University Mainz Moscow Institute of Physical Technology Moscow Institute of Physical Technology Palatsky University University of Palatsky University Ŷ Kütech Cutech Swiss Federal Institute of Technology Lausanne Swiss Federal Institute of Technology Lausanne University of Amsterdam University of Amsterdam University of Basel University of Basel University of Basel University of Tübingen University of Tübingen Waltermeissner Institute Waltermeissner Institute et al. et al.
扬声器和tittles Miles C. Andrews,医学博士,博士医学肿瘤学家,澳大利亚莫纳什大学高级研究员肿瘤,患者和微生物组:对癌症免疫疗法的广角观察10:05〜10:45
Meigan Aronson,(UBC,加拿大温哥华)Tommaso Callarco,(德国朱利希)Susan Coppersmith,(UNSW,悉尼)Marcello Dalmonte,(ICTP,Trieste Italy)Rosario Fazio Rika Kawakami(日本Riken)Daniel损失(Riken andUniv。Basel,Switzerland)Tiago Mendes,(德国奥斯堡大学)Bill Munro(NTT)Will Oliver,(MIT Sai(Riken和UST,东京日本)Benoit Vermersch,(CNRS,格林布勒法国)弗兰克·威廉·莫赫(Frank Wilhelm-Mauch)