主管博士慕尼黑大学的AliErtürk中风和痴呆研究研究所(ISD)诊所第一审查员:博士AliErtürk第二评论家:博士教授医学MarcoDüring国防日期:2020年11月25日
1. Sahoo J、Mishra R、Joshi RK (2024) 批量分离 RNA 测序 (BSR-Seq) 结合 SNP 基因分型对洋葱 (Allium cepa L.) 紫斑抗性基因进行定位和表征。植物分子生物学报告。https://doi.org/10.1007/s11105-024-01466-1 (IF-1.6)。2. Mahanty B、Mishra R、Joshi RK (2023) 洋葱 (Allium cepa L.) 对镰刀菌基底腐病感染的 miRNome 动态的全球研究。生理和分子植物病理学。https://doi.org/10.1016/j.pmpp.2023.102157。(IF-2.89)。 3. Sahoo J、Mishra R、Joshi RK (2023) 开发与紫斑病抗性相关的 SNP 标记,用于洋葱 (Allium cepa L.) 育种中的标记辅助选择。3 生物技术。https://doi.org/10.1007/s13205-023-03562-7 (IF-2.89)。4. Mahanty B、Mishra R、Joshi RK (2023) 尖镰孢菌 f.sp cepae 小 RNA (Foc-sRNA) 通过跨界 RNA 干扰促进洋葱 (Allium cepa L.) 的疾病易感性。生理和分子植物病理学。125: 102018。https://doi.org/10.1016/j.pmpp.2023.102018。(IF- 2.74)。 5. Sahoo J、Mahanty B、Mishra R、Joshi RK (2023) 开发与紫斑病抗性相关的 SNP 标记,用于洋葱 (Allium cepa L.) 育种中的标记辅助选择。3 Biotech。13: 137。https://doi.org/10.1007/s13205-023-03562-7。(影响因子 2.89)。6. Mahanty B、Mishra R、Joshi RK (2023) 植物与真菌病原体之间的跨界小 RNA 通讯 - 最新更新和未来农业的前景。RNA 生物学。https://doi.org/10.1080/15476286.2023.2195731。(影响因子:4.77)。 7. Mahanty B、Mishra R、Joshi RK (2023) 雌雄异株葫芦科植物的性别分化——分子视角。生物技术研究杂志。18(2): 118-126。https://doi.org/10.25303/1802rjbt1180126 (IF-0.35)。8. Mahanty B、Mishra R、Joshi RK (2022) Zn(II) 2 Cys 6 簇基因家族的分子表征及其与洋葱基腐病病原菌 Fusarium oxysporum f. sp. cepae 致病性的关联。生理和分子植物病理学。https://doi.org/10.1016/j.pmpp.2021.101782。 (影响因子 - 2.74) 9. Mallick T、Mishra R、Mohanty S、Joshi RK (2022) 马铃薯软腐病原菌 Pectobacterium carotovorum 菌株 ICMP 5702 的全基因组分析,以预测其遗传特征的新见解。Plant Pathol J. 38(2): 102-114。https://doi.org/10.5423/PPJ.OA.12.2021.0190 (影响因子:2.32)。10. Nanda S、Kumar G、Mishra R、Joshi RK (2022) 微生物辅助缓解马铃薯中重金属毒性
神经信息流 (NIF) 为神经科学中的系统识别提供了一种新方法。它模拟多个大脑区域中的神经计算,并且可以通过非侵入性数据的随机梯度下降进行端到端训练。NIF 模型通过耦合张量网络表示神经信息处理,每个张量都编码大脑区域中包含的感官输入的表示。这些张量的元素可以解释为皮质柱,其活动编码了时空位置中特定特征的存在。每个张量都通过低秩观察模型与特定于大脑区域的测量数据耦合,这些低秩观察模型可以分解为局部神经元群的空间、时间和特征感受野。这些观察模型和定义区域内信息处理的卷积权重都是通过预测感官刺激期间的神经信号端到端学习的。我们使用单个参与者记录的大规模 fMRI 数据集对早期视觉区域活动训练了一个 NIF 模型。我们表明,我们可以恢复与实证结果一致的合理的视觉表征和群体感受野。
量子密钥分发 (QKD) [1] 是在双方 Alice 和 Bob 之间生成安全密钥的一种特殊方法,该方法可确保量子计算机时代传输信息的隐私。从历史上看,最早提出的协议是离散变量 (DV) 协议 [2, 3],其中信息以单个光子的状态进行编码:偏振、相位或时间箱。然而,随着时间的推移,连续变量 (CV) 协议 [4–6] 被引入,由于使用同差/异差检测系统代替单光子探测器,这些协议被认为更高效、速率更高且具有成本效益。考虑 QKD 系统的安全性时,必须考虑到它们中的每一个都具有并不理想的有限物理实现,这为窃听者 Eve 提供了进行多次攻击并提取部分密钥的机会。为了防止这种威胁,针对每个协议,正在开发一个复杂的系统来评估 Eve 可用的信息和可接受的错误水平。目前,已经提出了相当多的工作,涵盖 CV-QKD 协议的安全性主题 [7–14]。在最适合实际实施的协议中,GG02 协议 [6,15] 脱颖而出,考虑到有限密钥效应,该协议的安全性已证明可以抵御相干(一般)攻击。此外,还考虑了不受信任和受信任的硬件噪声模型 [12]。后者是可取的,因为许多安全级别意味着 Eve 无法访问 Alice 和 Bob 的块,而且,考虑到不受信任的噪声会使协议基本上无法使用。因此,本文将在具有受信任硬件噪声的实际实施中提供针对一般攻击的 CV-QKD 的完整安全性证明。在第 2 节中,我们描述了 CV-QKD 方案的光学配置;在第 3 至第 5 节中,我们给出了可信噪声场景中协议的描述,并考虑了超出一般安全证明框架的特定攻击的可能性。在第 6 节中,我们提供了一种评估和监控实验参数的技术;在第 7 节中,我们阐明了安全性分析并估计了有限长度安全密钥的生成率。在第 8 节中,我们讨论了结果并得出了适当的结论。
1杀人生命实验室科学,KTH - 皇家技术学院,171 65斯德哥尔摩,瑞典; oaltay@kth.se(O.A。 ); hong.yang@scilifelab.se(H.Y. ); cheng.zhang@scilifelab.se(C.Z. ); mathias.uhlen@scilifelab.se(m.u.) 2土耳其埃祖鲁姆大学兽医学院病理学系,土耳其; syildirim@atauni.edu.tr(s.y。 ); ismail.bolat@atauni.edu.tr(i.b.) 3土耳其埃祖鲁姆大学兽医学院药理学和毒理学系,土耳其; cemil489@gmail.com 4分子生物学和遗传学系,科学学院,Erzurum技术大学,Erzurum 25240,土耳其; senaoner02@gmail.com(s.o. ); ozlem.ozdemir@erzurum.edu.tr(O.O.T。 ); enesiyte@gmail.com(M.E.A。) 5,阿塔图克大学医学院医学药理学系,土耳其Erzurum 25240; ahmeth@atauni.edu.tr 6主机 - 麦片互动中心,牙科学院,口腔和颅面科学学院,伦敦国王学院,英国伦敦SE1 9rt,英国伦敦伦敦; saeed.shoaie@kcl.ac.uk 7分子与临床医学系,哥德堡大学Sahlgrenska大学医院,瑞典413 45; jan.boren@wlab.gu.se 8,阿塔图克大学医学院医学系,土耳其Erzurum 25240; hasanturkez@yahoo.com *通信:adilm@scilifelab.se1杀人生命实验室科学,KTH - 皇家技术学院,171 65斯德哥尔摩,瑞典; oaltay@kth.se(O.A。); hong.yang@scilifelab.se(H.Y.); cheng.zhang@scilifelab.se(C.Z.); mathias.uhlen@scilifelab.se(m.u.)2土耳其埃祖鲁姆大学兽医学院病理学系,土耳其; syildirim@atauni.edu.tr(s.y。); ismail.bolat@atauni.edu.tr(i.b.)3土耳其埃祖鲁姆大学兽医学院药理学和毒理学系,土耳其; cemil489@gmail.com 4分子生物学和遗传学系,科学学院,Erzurum技术大学,Erzurum 25240,土耳其; senaoner02@gmail.com(s.o.); ozlem.ozdemir@erzurum.edu.tr(O.O.T。); enesiyte@gmail.com(M.E.A。)5,阿塔图克大学医学院医学药理学系,土耳其Erzurum 25240; ahmeth@atauni.edu.tr 6主机 - 麦片互动中心,牙科学院,口腔和颅面科学学院,伦敦国王学院,英国伦敦SE1 9rt,英国伦敦伦敦; saeed.shoaie@kcl.ac.uk 7分子与临床医学系,哥德堡大学Sahlgrenska大学医院,瑞典413 45; jan.boren@wlab.gu.se 8,阿塔图克大学医学院医学系,土耳其Erzurum 25240; hasanturkez@yahoo.com *通信:adilm@scilifelab.se5,阿塔图克大学医学院医学药理学系,土耳其Erzurum 25240; ahmeth@atauni.edu.tr 6主机 - 麦片互动中心,牙科学院,口腔和颅面科学学院,伦敦国王学院,英国伦敦SE1 9rt,英国伦敦伦敦; saeed.shoaie@kcl.ac.uk 7分子与临床医学系,哥德堡大学Sahlgrenska大学医院,瑞典413 45; jan.boren@wlab.gu.se 8,阿塔图克大学医学院医学系,土耳其Erzurum 25240; hasanturkez@yahoo.com *通信:adilm@scilifelab.se
建议强烈推荐当有高质量证据表明干预措施的总体益处明显超过坏处时,会给出强烈推荐。这意味着所有或几乎所有患者都会接受推荐的干预措施。强烈反对 当有高质量证据表明干预措施的总体缺点明显超过益处时,会给出强烈反对的建议。当证据审查表明某项干预措施很可能无效时,也会提出强烈建议。弱/有条件推荐当干预措施的益处大于危害,或现有证据不能排除干预措施的显著益处,同时评估有害影响很少或没有时,会对干预措施给出弱/有条件推荐。当有证据表明患者的偏好有所不同时,也会采用此建议。弱/有条件推荐反对该干预措施 当干预措施的缺点超过优点,但没有强有力的证据支持时,会给出弱/有条件推荐反对该干预措施。当有强有力的证据表明其有益和有害,但难以确定两者之间的平衡时,也会采用这一建议。当有证据表明患者偏好有所不同时也会使用它。
简介:冠状病毒疫苗接种已被接受为防止严重性,传播和死亡率的全球健康措施。疫苗经常引起不良反应,这应该是由于疫苗引起的保护性免疫反应。这项研究旨在找出AZD 1222 Covishield疫苗在三级护理医院接受疫苗接种的前线卫生保健人员中首次剂量的副作用的普遍性。方法:这是对接受Covishield疫苗首次剂量的前线卫生工作者的描述性横断面研究。该研究是在获得机构审查委员会的道德批准后,于2021年2月至2021年3月在三级护理医院进行。便利抽样用于数据收集,并使用SPSS版本17分析数据进行分析。在95%置信区间的点估计以及二进制数据的频率和比例。结果:在629名参与者中,有344名(54.7%)参与者报告了疫苗接种后的一种或其他副作用。报道的主要副作用是发烧152(19.6%),肌痛144(22.9%),注射部位的疼痛123(19.6%),头痛75(11.9%)和疱疹带状疱疹的重新激活。结论:首次剂量的Covishield疫苗后,看到了轻度症状,几天之内就解决了。发现了一些重生疱疹带状疱疹的病例。患有COVID-19感染史的患者中,不良反应更多。
自1885年第一次使用氧气用于呼吸支持以来,氧气的效用已随着我们对氧剂量机制和生物学作用的理解的演变而不断演变。这些生物学作用之一,干细胞动员,为细胞氧张力在组织愈合和再生中的作用提供了关键机制(Thom等,2006)。随后的研究建立了氧剂量与干细胞动员之间的直接关系(Heyboer等,2014)。通过氧气剂量动员干细胞的机理在骨髓中增加一氧化氮(Goldstein等,2006),导致血管形成加速和伤口愈合(Gallagher等,2006; Milovanova等,2008,2008)。这些论文在2.0 atm的绝对呼吸100%氧(PIO2 = 1,426 mmHg)和2.4 ATM绝对呼吸100%氧气(PIO2 = 1,777 mmHg)上,在2.0 atm氧气的刺激剂量曲线的剂量刺激阶段建立了两个点。氧气的低剂量刺激阶段尚未完全阐明。在我们实验室中进行的一项实验中,首次研究了开始干细胞动员和细胞因子调节所需的最小剂量。该实验表明,在大鼠模型中,干细胞被42%正常氧(PIO2 = 300 mmHg)动员(Maclaughlin等,2019)。随后在2022年的实验室还进行了一个新的实验,建立了一个新的低剂量刺激点为1.27 atm绝对高压空气(PIO2 = 189 mmHg)。这些发现支持低氧水平可以实质上影响干细胞动力学和该研究导致动员的茎祖细胞(SPC)在9次暴露至1.27 ATA高压空气后,在第十次暴露后72小时进一步增加了3倍,不仅立即增加了3倍,这不仅表明即时而且持久效果(Maclaughlin等人,20233)。为了进一步阐明氧气的炎症剂量曲线的低剂量刺激阶段,在本实验中,我们测试了NBO(100%正常医学氧)(PIO2 = 713 mmHg),以进行干细胞动员和炎症细胞因子调节。首次以氧气的氧气和供应渠道不知所措,但最终导致了改善,因此其万维邦的可用性增加了(组织,2021年)。尽管在Covid-19大流行期间使用了氧气,主要是因为其能够为有助于维持足够的血氧水平的肺提供补充氧气,但尚不清楚是否涉及其他机制(即干细胞动员和细胞因子调节)。最近的研究表明,相对较低的氧张力(PIO2)可以产生显着的生物学反应(Maclaughlin等,2019; Maclaughlin等,2023; Miller等,2015; Cifu等,2014)。
3. R. Mittal、H. Juneja、N. Kasimkota、RK Tripathy 和 RB Pachori,一种基于 IoT 的时频域集成深度学习框架,用于通过肺部声音记录检测肺部疾病,面向医疗 5.0 的临床实践中的高级可穿戴传感器,Springer,印刷中,2025 年。(编辑:H. Liu、G. Tse、P. Bhattacharya、X. Wang、RK Tripathy 和 CH Goh)