RKHM中监督学习的重要应用是其输入和输出是图像的任务。如果所提出的内核具有特定的参数,则产品结构是卷积,与傅立叶成分的点型相对应。通过将C ∗ - 代数扩展到更大的代数,我们可以享受比卷积更多的一般操作。这使我们能够通过在傅立叶组件之间进行交互来有效地分析图像数据。关于概括结合,我们通过Rademacher复合物理论得出了与RKHS和VVRKHS相同的结合类型。这是我们所知,这是RKHM假设类别的第一个概括。关于与现有方法的联系,我们表明,使用框架,我们可以重建现有方法,例如卷积神经网络(Lecun等,1998)和卷积内核(Mairal等,2014),并进一步概括它们。这一事实意味着我们框架的表示能力超出了现有方法。
核方法是机器学习中最流行的技术之一,其中学习任务是利用再生核希尔伯特空间 (RKHS) 的性质来解决的。在本文中,我们提出了一种具有再生核希尔伯特 C ∗ 模块 (RKHM) 的新型数据分析框架,它是 RKHS 的另一种推广,而非矢量值 RKHS (vv-RKHS)。使用 RKHM 进行分析使我们能够比 vv-RKHS 更明确地处理变量之间的结构。我们展示了在希尔伯特 C ∗ 模块中构建正交系统的理论有效性,并推导了在数值计算中使用这些理论性质在 RKHM 中进行正交化的具体程序。此外,我们应用这些来推广 RKHM 核主成分分析和具有 Perron-Frobenius 算子的动态系统分析。我们还使用合成和真实世界数据研究了我们的方法的经验性能。