准备系统:使用gromacs/namd/amber分析轨迹运行MD模拟的蛋白质,配体和溶剂设置轨迹:RMSD,RMSF,氢键和SASA自由能计算(MM-PBSA/MM-GBS)和案例研究
图3(a):针对HMPV(PDB ID:5WB0)的抗病毒化合物和对照的分子动力学仿真结果(2000 ns)。模拟图表示平均(a)RMSD和(b)RMSF值,表明结构稳定性和灵活性。模拟图显示(D)SASA,(E)氢键形成和(F)结合自由能,说明了相互作用强度和分子暴露。循环(c)循环(rog)值的平均(c)半径被注释以突出结合的紧凑性。在测试的化合物中,Remdesivir展示了最稳定,最有效的结合,由低RMSD,高氢键和强结合自由能的支持。
除蜱麻痹外,由于症状重叠,临床上难以区分;可能出现病原体组内的交叉反应和持续性 IgM。通常包括:莱姆病、疟疾、细菌性或病毒性脑膜炎、其他罕见蜱传病原体、伤寒。治疗对于落基山斑疹热 (RMSF),及时诊断和治疗(使用强力霉素)对于预防严重疾病至关重要。蜱麻痹可通过去除蜱虫来治疗。其他可用抗生素治疗(与抗寄生虫药物联合治疗巴贝斯虫病)。持续时间因病原体而异。暴露媒介:蜱虫。除了通过输血或器官捐赠传播的巴贝斯虫病和边虫病外,不会在人与人之间传播。实验室检测当地卫生管辖区 (LHJ) 和传染病流行病学 (CDE) 可以
1,2 deen dayal upadhyay gorakhpur大学物理学系,戈拉赫布尔摘要:分子动力学模拟被用来仔细检查DNA链的构象变化,并阐明镁离子对拓扑异构酶IA酶的影响。通过均方根偏差(RMSD),均方根波动(RMSF),氢键距离,二面角和溶剂可访问的表面积(SASA)的计算,我们精心仔细检查了结构动力学。结果揭示了DNA链改变的复杂模式,展示了镁离子在调节拓扑异构酶IA酶行为中的深刻作用。这项研究为控制DNA构象变化的分子机制提供了基本见解,为进一步理解拓扑异构酶IA酶功能的生化复杂性奠定了基础。关键字:拓扑异构酶IA,MD模拟,DNA裂解,基因组稳定性。
缩写:Acpype,Antchamber Python Parser界面;助理,吸收,分布,代谢,排泄和毒性; ATP,三磷酸腺苷; cAMP,环状AMP,腺苷3',5' - 环状单磷酸盐; DCCM,动态交叉相关矩阵;涂料,离散优化的蛋白质能; DSSP,定义蛋白质的二级结构;美国食品和药物管理局FDA; FEL,自由能景观; GTP,三磷酸鸟嘌呤; Lincs,线性约束求解器; MD,分子动力学; mmpbsa,分子力学泊松 - 玻尔兹曼表面积; NPT,恒定数量的颗粒,系统压力和温度; NVT,恒定颗粒数,系统体积和温度; PCA,主成分分析; PDB,蛋白质数据库; PI,无机磷酸盐; PME,粒子网埃瓦尔德; PPA1,无机焦磷酸酶1; PPI,无机焦磷酸盐; RG,回旋半径; RMSD,均方根偏差; RMSF,根平方波动; SEM,平均值的标准误差;微笑,简化的分子输入线进入系统。
摘要:本研究通过全面的分子动力学(MD)仿真探讨了新型S-三嗪基于S-三嗪的MMP-10抑制剂的动态行为和结合稳定性。所研究的化合物,称为化合物(i),表现出有效的抗大肠癌活性(HCT-116; IC 50 =0.018μm)。从机械上讲,标题化合物(i)超过了参考MMP抑制剂NNGH对MMP-10(IC 50 =0.16μm),HCT-116细胞中的GSH耗尽(相对折叠降低= 0.81),使用适度的GPX4抑制作用,诱导的脂质过氧化物和1.32相对倍数。使用Gromacs计划进行100 ns进行MD模拟,以评估复合物的均方根偏差(RMSD),均方根均方根波动(RMSF),旋转半径(RG)(RG),溶剂可访问的表面积(SASA),SASA(SASA),配体相互作用网络,触点频率分析,触点和分子机械构成 - 型 - 分子机械范围(MM MM MM),阐明负责其抗直肠癌活性的分子原则。结果表明,化合物(i)在MMP-10活性位点具有稳定且一致的相互作用,该相互作用支持其有前途的抑制作用和在结直肠癌治疗中的前瞻性治疗应用。结直肠癌(CRC)是第三常见的恶性肿瘤,也是癌症相关死亡率的第四大原因。
伏诺替纳斯特的结构特征显示了三个部分,例如表面识别苯甲酰胺,接头己酰基和金属结合羟氨酸。在这项工作中,用取代的苯基环改变了表面识别组,咪唑基 - 三唑组用相同的金属结合羟氨基酸更改了接头组,最后设计了(F1-F4)分子。然后将所有设计的分子对接使用HDAC 2(4LXZ)受体。f4显示-8.7 kcal/mol的最大结合能,标准vornostat显示-7.2 kcal/mol。所有设计的分子都是使用gromacs软件模拟的分子动力学,以确定RMSD,RMSF,SASA和氢键的数量。所有仿真数据显示配体和受体之间的良好相互作用。然后,所有分子均由三个部分合成:a。二硝基苯基连接的三唑羟酸的合成,b。取代的恶唑酮衍生物的合成和c。在最后一步中,对替代的恶唑酮衍生物和二硝基苯基链接的三唑羟氨基酸反应,以产生最终的分子集(F1-F4)。DFT分析确定,F4以良好的亲电性而出现为最反应性分子。此外,对乳腺癌细胞系的体外抗增殖活性表明,F4是所有合成分子中最有效的抗癌分子。
每年,全球有成千上万的人因癌症发病率和死亡率上升而受苦。此外,癌症患者的治疗选择也很昂贵,而且抗癌药物往往疗效较低且副作用较大。DNA拓扑异构酶可以作为已确定的癌症靶点,因为人类拓扑异构酶(Top1)在有丝分裂后阶段调节基因转录,并在复制和修复过程中在DNA超螺旋中起关键作用。因此,在药物治疗过程中,阻断Top1可能对抑制癌细胞增殖至关重要。这里,通过虚拟筛选对中药化合物进行了筛选。中药库的虚拟筛选过程使得能够根据结合能(-7.1至-9.3Kcal/mol)将化合物列表缩小到29种化合物,而在Lipniski过滤之后,使用MM/PB(GB)SA过滤来筛选剩下的22种化合物,并根据结合自由能选出前四种化合物。这里,这四种化合物; CID-65752(T2972:吴茱萸次碱)、CID-5271805(T4S2126:银杏黄素)、CID-9817839(T2S2335:脱氢吴茱萸碱)和CID-51106(T3054:达伍里索林)在分子对接过程中的结合能分别为-8.2、-8.5、-8.3和-8.2,高于其他化合物。在这四个化合物中,ADMET筛选未发现两个筛选化合物CID-5271805和CID-9817839的毒性特征。此外,药物-蛋白质复合物的SASA(溶剂可及表面积)、Rg(回转半径)、RMSD(均方根偏差)和RMSF(均方根波动)轮廓在分子动力学模拟研究中揭示了化合物的稳定性和刚性。然而,这些研究需要通过实验方法进行验证,以开发更有效的抗癌药物。