熵相关的相位稳定可以允许多个主元素的组成复杂的固体解决方案。最初针对金属引入了大规模混合方法,最近已扩展到离子,半导体,聚合物和低维材料。多元混合可以利用散装材料以及界面和位错的新型随机,弱有序的聚类和降水状态。许多可能的原子配置提供了发现和利用新功能的机会,并创建了新的本地对称功能,订购现象和源自配置。这打开了一个巨大的化学和结构空间,在该空间中,未知的相位状态,缺陷化学,机制和性质(一些以前被认为是互斥的)可以在一种材料中进行核对。早期的研究集中在强度,韧性,疲劳和延展性等机械性能上。本综述将焦点转向多功能性能曲线,包括电子,电化学,机械,磁性,催化,与氢相关,不散热和热量特征。破坏性的设计机会在于将其中几个功能结合在一起,从而在不牺牲其独特的机械性能的情况下渲染高渗透材料。
几十年来,晶界工程已被证明是调整金属材料机械性能的最有效方法之一,尽管由于晶粒尺寸在受到热负荷时迅速增加(晶体边界的热稳定性低),可实现的微观结构的细度和类型受到限制。在这里,我们部署了一种独特的化学边界工程 (CBE) 方法,增加了可用合金设计策略的多样性,这使我们能够创建一种即使在高温加热后也具有超细分级异质微观结构的材料。当应用于碳含量仅为 0.2 重量%的普通钢时,这种方法可产生超过 2.0 GPa 的极限强度水平,同时具有良好的延展性(>20%)。虽然这里展示的是普通碳钢,但 CBE 设计方法原则上也适用于其他合金。