摘要:与高分辨率质谱耦合的液态色谱分析(NTA)提高了与靶向分析技术相比,可以提高理解复杂混合物的分子组成的能力。但是,对未知化合物的检测意味着NTA中的定量是具有挑战性的。本研究提出了一种新的半定量方法,用于有机气溶胶的NTA。使用多个定量标准的平均电离效率来实现未知数,这些标准在与未知分析物相同的保留时间窗口内洗脱。总共110个真实标准构建了25个保留时间窗口,用于定量氧化(CHO)和有机肌(Chon)物种。该方法在生物质燃烧有机气溶胶(BBOA)的提取物上进行了验证,并与具有真实标准的定量进行了比较,并且平均预测误差为1.52倍。此外,从真实的标准定量中估计了70%的浓度(预测误差在0.5到2倍)。与预测性电离效率方法相比,半定量方法还显示出良好的CHO化合物定量一致性,而对于Chon物种,半定量方法的预测误差(1.63)显着低于预测性电离效率方法(14.94)。将CHO和CHON物种相对丰度的衍生衍生而应用于BBOA表明,与半定量方法相比,使用峰面积低估了CHO的相对丰度,并将Chon的相对丰度高于Chon的相对丰度。这些差异可能会导致对复杂样本中源分配的严重误解,从而强调需要解决NTA方法中的电离差异。■简介
摘要 — 使用低成本光电容积描记法 (PPG) 传感器,越来越多地在腕戴式设备中执行心率 (HR) 监测。然而,由受试者手臂运动引起的运动伪影 (MA) 会影响基于 PPG 的心率跟踪的性能。这通常通过将 PPG 信号与惯性传感器的加速度测量相结合来解决。不幸的是,大多数此类标准方法都依赖于手动调整的参数,这会削弱它们的泛化能力及其对现场真实数据的适用性。相比之下,基于深度学习的方法尽管具有更好的泛化能力,但被认为过于复杂,无法部署在可穿戴设备上。在这项工作中,我们解决了这些限制,提出了一种设计空间探索方法来自动生成丰富的深度时间卷积网络 (TCN) 系列用于心率监测,所有这些网络都来自单个“种子”模型。我们的流程涉及两个神经架构搜索 (NAS) 工具和一个硬件友好的量化器的级联,它们的组合可以产生高度准确和极其轻量级的模型。在 PPG-Dalia 数据集上进行测试时,我们最准确的模型在平均绝对误差方面创下了新的最高水平。此外,我们将 TCN 部署在具有 STM32WB55 微控制器的嵌入式平台上,证明了它们适合实时执行。我们最准确的量化网络实现了 4.41 每分钟 (BPM) 的平均绝对误差 (MAE),能耗为 47.65 mJ,内存占用为 412 kB。同时,在我们的流程生成的网络中获得 MAE < 8 BPM 的最小网络的内存占用为 1.9 kB,每次推理仅消耗 1.79 mJ。
大脑解码不仅是一个有趣的研究领域,而且从认知和临床的角度也具有收益。近年来,大脑解码从脑电图记录中有很大的增长。通常,基于EEG的非侵入性脑部计算机界面(BCI)通常用于解码精神情绪/意图(从宽松的意义上)。这种解码的实用且有用的例子是,BCI控制轮椅或BCI控制的用户界面,可以帮助不同的人。自1924年被德国精神主义者汉斯·伯杰(Hans Berger)(Chen,2014年)发现以来,脑电图(EEG)主要被卫生工作者用于诸如癫痫发作的应用(Chen,2014年)。然而,多年来,它在认知神经科学和生物医学工程领域的用途显着改善。与其他一些大脑感应性相比,该技术的主要收益不仅是其非侵入性,而且是其高时间分辨率以及相对较低的成本。除了这些优势之外,脑电图信号的劣势是非常差的SNR。说过,由于信号与噪声比率较差,因此很难吸收来自脑电图的大脑中发生的事情。尽管如此,已经为诸如解码情感和分析的应用程序完成了大量的BCI成功工作(Chen等,2019; Craik等,2019; Gao等,2015)等。受到此类研究的启发,我们进一步探索了一个重新
摘要 — 在本文中,我们研究了从脑电图 (EEG) 数据中解码跨受试者运动想象 (MI) 的问题。由于各种个体间差异(例如大脑解剖结构、性格和认知特征),多受试者 EEG 数据集呈现出几种领域转变。这些领域转变使多受试者训练成为一项具有挑战性的任务,也阻碍了跨受试者的稳健泛化。受领域泛化技术对于解决此类问题的重要性的启发,我们提出了一种两阶段模型集成架构,该架构由多个特征提取器(第一阶段)和一个共享分类器(第二阶段)构建,我们使用两个新颖的损失项对其进行端到端训练。第一个损失应用课程学习,迫使每个特征提取器专门针对训练对象的子集并促进特征多样性。第二个损失是集成内蒸馏目标,允许集成模型之间协作交换知识。我们将我们的方法与几种最先进的技术进行了比较,在两个大型 MI 数据集(即 PhysioNet 和 OpenBMI)上进行了独立于受试者的实验。我们的算法在 5 倍交叉验证和留一受试者评估设置中均优于所有方法,并且使用的可训练参数数量要少得多。我们证明了我们的模型集成方法结合了课程学习和协作训练的力量,可实现高学习能力和稳健的性能。我们的工作解决了多受试者 EEG 数据集中的域转移问题,为无校准脑机接口铺平了道路。我们将代码公开发布在:https://github.com/gzoumpourlis/Ensemble-MI。索引术语——脑机接口、EEG、运动意象解码、模型集成、域泛化
摘要。div>十年级的海洋学,环境和生态变化已在萨利什海(Salish Sea)报道,这是东北太平洋地区的生态富有生产力的内陆海洋,支持数百万people的经济和文化。但是,存在与物理水性质有关的大量数据差距,使得很难评估趋势和物理海水性质之间的影响途径和海洋生态系统的生产力。为了解决这些差距,我们介绍了Salish Sea(Hotssea)V1的后标,这是一种使用核心用于欧洲海洋建模(NEMO)海洋发动机的3D物理海洋学模型,其时间覆盖为1980 - 2018年。我们使用了一种实验方法来逐步评估用于边界强制性大气和海洋重新分析产品的敏感性以及模型网格的Hor-Izontal离散化(〜1.5 km)。量化了从强迫继承的偏差,并发现在一个海洋边界上应用的简单温度偏置校正因子可实质上提高模型技能。盐度和温度的评估表明,在佐治亚州的海峡中表现最好。相对较大的偏见发生在近地表水域中,尤其是在模型网格的水平分辨率的托架狭窄的子域中。但是,我们证明该模型模拟了温度异常,并且在一般同意的观察结果一般同意的是,在整个水柱上具有世俗的变暖趋势。总体而言,尽管从强迫继承了偏见HOTSSEA V1在整个域的北部和中部部分观察到了稀疏的观测值。
为成像大脑的时空电活动做出了许多努力,目的是绘制其功能和功能障碍以及帮助管理脑疾病的管理。在这里,我们提出了一个非惯性深度学习 - 基于源成像框架(DEEPSIF),该框架提供了来自非侵入性高密度脑电图(EEG)记录的强大而精确的时空估计值。deepSIF采用了能够建模中尺度脑动力学的生物物质模型产生的合成训练数据。潜在的大脑来源的丰富特征嵌入了现实的训练数据中,并被深sif网络隐含地学习,避免了与明确配置和调整先验有关的并发症在优化问题中,就像常规源成像方法中一样。通过1)通过1)评估一系列数值实验,2)在三个公共数据集中总共20个健康受试者中的感官和认知大脑反应,以及3)严格验证DeepSif在20个识别20型药物抑制患者中的癫痫效果区域的capa的能力,从而对ePiLsists epilessys的同伴进行了比较,结果。deepSif表现出良好的表现,产生的结果与有关感觉和认知信息处理的常见神经科学知识一致,以及有关癫痫组织的位置和范围的临床发现以及超过常规源成像方法。作为数据驱动的成像框架的DeepSIF方法,可以使时空脑动力学的有效且有效的高分辨率功能成像,这表明其对神经科学研究和临床应用的广泛适用性和价值。
摘要 - 目的:选择性听觉注意解码(AAD)算法处理大脑数据(例如脑电图),以解码一个人参加的多个竞争声源。例子是神经ste的助听器或通过脑部计算机界面(BCI)进行通信。最近,已经证明可以在无监督的环境中基于刺激重建的刺激重建来训练此类AAD解码器,在这种情况下,没有关于参加哪种声音源的地面真相。在许多实际情况下,这种地面真相标签不存在,因此很难量化解码器的准确性。在本文中,我们旨在开发一种完全无监督的算法,以估算竞争性说话者聆听任务期间基于相关的AAD算法的准确性。方法:我们通过将AAD决策系统建模为具有添加剂白色高斯噪声的二进制相移键通道来使用数字通信原理。结果:我们表明,针对不同量的培训和估计数据以及决策窗口长度,提出的无监督性能估计技术可以准确地确定AAD准确性。此外,由于不同的应用需要不同的目标准确性,因此我们的方法可以估计任何给定目标准确性所需的训练量最小。结论:我们提出的估计技术准确地预测了基于相关的AAD算法的性能,而无需访问地面图标签。在BCIS中,它可以支持强大的沟通范式,并提供护理人员的准确反馈。显着性:在神经启动的助听器中,我们方法提供的准确性估计值可以支持时间自适应解码,动态增益控制和神经反馈。
简介。对计划地形的高保真理解对于准确的表面条件建模是必要的。对于潜在的未来人类和机器人勘探领域,例如即将到来的阿耳emis派任务的候选降落地点。LOLA提供的 1高度测量测量已用于在月球杆附近的Moder-Ate分辨率上开发地形模型,例如2米 /小像素(MPP)。 但是,在许多感兴趣的地区,需要高分辨率的托图。 分析方法,例如形状从阴影(SFS),3,4,以高分辨率光学图像的形式包含上下文信息,例如由月球侦察轨道轨道窄角(LRO NAC)所提供的信息。 sfs将先验的低分辨率DEM作为焦油分辨率的共同注册图像作为输入,其中每个图像都从其他方向从太阳照亮。 这种方法提供了统计保证和输出高分辨率DEM的可解释性,但它们在计算上很昂贵,需要人类输入(例如参数微调)。 因此,适用于大面积很麻烦。 我们实施了基于生成-AI的超分辨率工具,以在月球上开发准确的高分辨率DEM。 尤其是,我们将图像到图像形象的schodinger桥(SB)方法5应用于条件性一代设置,该设置在超分辨率任务中取得了很大的成功。 我们的图像到图像SB Trans-在考虑一组操作图像的同时,形成了向后高分辨率DEM的先验样品(低分辨率DEM)。1高度测量测量已用于在月球杆附近的Moder-Ate分辨率上开发地形模型,例如2米 /小像素(MPP)。但是,在许多感兴趣的地区,需要高分辨率的托图。分析方法,例如形状从阴影(SFS),3,4,以高分辨率光学图像的形式包含上下文信息,例如由月球侦察轨道轨道窄角(LRO NAC)所提供的信息。sfs将先验的低分辨率DEM作为焦油分辨率的共同注册图像作为输入,其中每个图像都从其他方向从太阳照亮。这种方法提供了统计保证和输出高分辨率DEM的可解释性,但它们在计算上很昂贵,需要人类输入(例如参数微调)。因此,适用于大面积很麻烦。我们实施了基于生成-AI的超分辨率工具,以在月球上开发准确的高分辨率DEM。尤其是,我们将图像到图像形象的schodinger桥(SB)方法5应用于条件性一代设置,该设置在超分辨率任务中取得了很大的成功。我们的图像到图像SB Trans-在考虑一组操作图像的同时,形成了向后高分辨率DEM的先验样品(低分辨率DEM)。生成的AI方法具有比分析方法更有效地扩展到更大的输入的潜力,并且可以超越培训数据集。
摘要:先进镜面技术开发 (AMTD) 项目为期 6 年,旨在完善 4 米或更大的单片或分段紫外/光学/红外空间望远镜主镜组件所需的技术,用于一般天体物理和系外行星任务。AMTD 采用科学驱动的系统工程方法。从科学要求开始,推导出主镜孔径、面密度、表面误差和稳定性的工程规范。影响最大的规范可能是每 10 分钟 10 pm 的波前稳定性。六项关键技术取得了进展:(1) 制造大孔径低面密度高刚度镜面基板;(2) 设计支撑系统;(3) 校正中/高空间频率图形误差;(4) 减轻段边缘衍射;(5) 调整段间间隙;(6) 验证集成模型。 AMTD 成功展示了一种制造尺寸达 1.5 米、厚度达 40 厘米的基板的工艺,该工艺通过堆叠多个核心元件并将它们低温熔合在一起来实现。为了帮助预测在轨性能并协助架构贸易研究,为两个镜子组件(由 AMTD 合作伙伴 Harris Corp. 制造的 1.5 米超低膨胀 (ULE ® ) 镜子和 Schott North American 拥有的 1.2 米 Zerodur ® 镜子)创建了集成模型。X 射线计算机断层扫描用于构建 1.5 米 ULE ® 镜子的“竣工”模型。通过在相关的热真空环境中测试全尺寸和子尺寸组件来验证这些模型。© 作者。由 SPIE 根据知识共享署名 4.0 未本地化许可证出版。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.JATIS.6.2.025001]
摘要 — 在本文中,我们研究了从脑电图 (EEG) 数据中解码跨受试者运动想象 (MI) 的问题。由于各种个体间差异(例如大脑解剖结构、性格和认知特征),多受试者 EEG 数据集呈现出几种领域转变。这些领域转变使多受试者训练成为一项具有挑战性的任务,也阻碍了跨受试者的稳健泛化。受领域泛化技术对于解决此类问题的重要性的启发,我们提出了一种两阶段模型集成架构,该架构由多个特征提取器(第一阶段)和一个共享分类器(第二阶段)构建,我们使用两个新颖的损失项对其进行端到端训练。第一个损失应用课程学习,迫使每个特征提取器专门针对训练对象的子集并促进特征多样性。第二个损失是集成内蒸馏目标,允许集成模型之间协作交换知识。我们将我们的方法与几种最先进的技术进行了比较,在两个大型 MI 数据集(即 PhysioNet 和 OpenBMI)上进行了独立于受试者的实验。我们的算法在 5 倍交叉验证和留一受试者评估设置中均优于所有方法,并且使用的可训练参数数量要少得多。我们证明了我们的模型集成方法结合了课程学习和协作训练的力量,可实现高学习能力和稳健的性能。我们的工作解决了多受试者 EEG 数据集中的域转移问题,为无校准脑机接口铺平了道路。我们将代码公开发布在:https://github.com/gzoumpourlis/Ensemble-MI。索引术语——脑机接口、EEG、运动意象解码、模型集成、域泛化