2.委员会由 、 和 组成,于 2023 年 6 月 7 日审查了请愿人的错误和不公正指控,并根据其规定,决定根据现有的记录证据采取以下纠正措施。委员会审议的文件材料包括附件、请愿人海军记录的相关部分以及适用的法规、条例和政策。
本报告中表达的意见基于 AECI Plant Health (AECI) 向 SRK Consulting (South Africa) (Pty) Ltd (SRK) 提供的信息。本报告中的意见是根据 AECI 的具体要求提供的。SRK 已尽一切努力审查所提供的信息。虽然 SRK 已将提供的关键数据与预期值进行了比较,但审查结果和结论的准确性完全取决于所提供数据的准确性和完整性。SRK 不对所提供信息中的任何错误或遗漏负责,也不承担因商业决策或由此导致的行动而产生的任何间接责任。本报告中提出的意见适用于 SRK 调查时存在的现场条件和特征,以及合理可预见的条件和特征。这些意见不一定适用于本报告日期之后可能出现的条件和特征,因为 SRK 对此事先不了解,也没有机会进行评估。
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。