最近,对不同深度神经网络(DNNS)架构的平行杂交模型的持续发展,越来越多的兴趣激增,以保持有用寿命(RUL)估计。在这方面,本文在文献中的第一次介绍了一种新的基于Hybrid DNN的框架,用于RUL估算,称为嘈杂的多径平行混合模型,用于剩余有用的寿命估计(NMPM)。提议的NMPM框架是三个平行路径的编写,第一个使用了一个嘈杂的双向长短术语记忆(BLSTM),用于提取时间特征并学习在两个方向,正向和后门中学习序列数据的依赖。第二个平行路径采用嘈杂的多层感知器(MLP),由三层组成以提取不同特征类别的层。第三个平行路径利用嘈杂的卷积神经网络(CNN)来提取特征的组成类。然后将三个平行路径的串联输出送入嘈杂的融合中心(NFC)以预测RLU。提出的NMPM已根据嘈杂的训练机制进行了培训,以增强其泛化行为,并增强模型的整体准确性和鲁棒性。使用NASA提供的CMAPS数据集对NMPM框架进行了测试和评估,该数据集说明了卓越的性能与最先进的对应物相比。
摘要 — 为了防止电力电子系统中发生灾难性故障,已经确定了多种故障前兆来表征功率器件的退化。然而,在确定支持高精度剩余使用寿命 (RUL) 预测的合适故障前兆方面存在一些实际挑战。本文提出了一种充分利用潜在故障前兆来制定复合故障前兆 (CFP) 的方法,其中 CFP 直接根据退化模型进行优化以提高预测性能。明确推导了退化模型的 RUL 估计值,以方便前兆质量计算。对于 CFP 公式,采用遗传规划方法以非线性方式整合潜在故障前兆。结果,阐述了一个可以为给定的 RUL 预测模型制定出更好故障前兆的框架。通过 SiC MOSFET 的功率循环测试结果验证了所提出的方法。
开发预测性维护模型的第一步是获取数据。此示例使用 NASA 数据存储库中公开提供的预测和健康管理挑战数据集。该数据集包括来自 218 个发动机的运行至故障数据,其中每个发动机数据集包含来自 21 个传感器的测量值。通过放置在发动机各个位置的传感器收集燃油流量、温度和压力等测量值,以向控制系统提供测量值并监控发动机的健康状况。该图显示了一个传感器对所有 218 个发动机的测量结果。
退化建模和剩余使用寿命 (RUL) 预测对于航空发动机的预测和健康管理至关重要。虽然已经引入了基于模型的方法来预测航空发动机的 RUL,但很少有关于使用新型数据驱动预测建模方法估计航空发动机 RUL 的研究报道。本研究的目的是介绍一种基于集成学习的预测方法来建模由于磨损而导致的指数退化过程以及预测航空发动机的 RUL。集成学习算法结合了多个基学习器,包括随机森林 (RF)、分类和回归树 (CART)、循环神经网络 (RNN)、自回归 (AR) 模型、基于自适应网络的模糊推理系统 (ANFIS)、相关向量机 (RVM) 和弹性网络 (EN),以实现更好的预测性能。粒子群优化 (PSO) 和顺序二次优化 (SQP) 方法用于确定分配给基学习器的最佳权重。在商用模块化航空推进系统仿真 (C-MAPSS) 工具生成的数据上演示了由集成学习算法训练的预测模型。实验结果表明,集成学习算法可以非常稳健地预测飞机发动机的 RUL,并且优于文献中报道的其他预测方法。[DOI:10.1115/1.4041674]
Daniel G. Pennington 主席 Robert C. Frazee 副主席 Wesley Chesbro Janet Gotch Steven R. Jones Paul Relis • Ralph E. Chandler 执行董事 如需本出版物的更多副本,请联系综合废物管理委员会公共事务办公室/回收热线 8800 Cal Center Drive, MS 12 Sacramento, CA 95826 http://www.ciwmb.ca.gov (800) 553-2962(仅限加州)或 (916) 341-6308 出版物编号 210-97-009 印刷在再生纸上 由 Environmental Science Associates, Inc. 为综合废物管理委员会准备,属于合同编号 IWM-C1089(75,000 美元)。本报告的陈述和结论为承包商的陈述和结论,不一定代表综合废物管理委员会、其员工或加利福尼亚州的陈述和结论。州政府不作任何明示或暗示的保证,也不对下文所含信息承担任何责任。任何提及商业产品或流程的行为均不得解释为对此类产品或流程的认可。综合废物管理委员会 (IWMB) 不会因残疾人士参与其计划而歧视他们。请致电公共事务办公室 (916) 341-6300,索取 IWMB 出版物的无障碍格式。听力障碍人士可通过加州中继服务 1-800-735-2929 联系 IWMB。