摘要:2022 年 4 月 1 日,AlfaCrux CubeSat 由 Falcon 9 Transporter-4 任务发射,这是 SpaceX 第四次专用小型卫星拼车计划任务,从佛罗里达州卡纳维拉尔角太空军站的 40 号航天发射台发射升空,进入 500 公里的太阳同步轨道。AlfaCrux 是一项业余无线电和教育任务,旨在在小型卫星任务的背景下提供学习和科学益处。这是一个理论和实践学习的机会,学习小型卫星的技术管理、系统设计、通信、轨道力学、开发、集成和操作。AlfaCrux 有效载荷是一种软件定义的无线电硬件,负责两项主要服务,即数字分组中继器和存储转发系统。在地面部分,已经开发了一个基于云计算的指挥和控制站,以及一个开放的在线平台,用于访问和可视化 AlfaCrux 遥测和用户数据和实验的主要信息。它还成为在轨数据库参考,可用于不同的研究,例如无线电传播、姿态重建、卫星传感器的数据驱动校准算法等。在此背景下,本文介绍了 AlfaCrux 任务、其主要子系统以及在早期轨道阶段取得的成就。本文还介绍和讨论了对航天器运行进行的科学和工程评估,以应对地面站的意外行为并更好地了解太空环境。
量子网络有望为许多破坏性应用提供基础架构,例如EOCIENT长距离量子通信和分布式量子计算1,2。这些网络的中心是使用光子通道之间在遥远节点之间分布纠缠的能力。最初开发用于量子传送3,4和Bell9s不平等的无漏洞测试5,6,最近也对电信FBR进行了纠缠分布,并回顾性7,8。然而,为了完全使用长距离量子网络链接的纠缠,必须知道它在纠缠状态衰变之前在节点上可用。在这里,我们证明了在FBRE链路上产生的两个独立捕获的单个rubidium原子之间的纠缠,长度高达33)km。为此,我们在建筑物400)中的两个节点中生成Atom3photon纠缠,并使用极化量子化的量子频率转换9。长FBR将光子引导到钟形测量设置,其中成功的光子投影测量预示了原子10的纠缠。我们的结果表明,纠缠分布在电信FBRE链接上的可行性有用,例如,对于独立于设备的量子键分布11313和量子中继器协议。提出的工作代表了实现大规模量子网络链接的重要步骤。
摘要 — 量子通信在广泛领域中的应用发展势头迅猛,尤其是那些需要高安全性数据传输的领域。另一方面,机器学习在包括网络在内的各种应用领域取得了许多突破性的成功。然而,目前,机器学习在量子网络中的应用并不像在其他领域那么广泛。出于这样的动机,我们提出了一种由机器学习驱动的量子网络纠缠路由方案,旨在在一个时间窗口内满足最大数量的需求(源-目的地对)。更具体地说,我们提出了一种深度强化路由方案,称为深度量子路由代理 (DQRA)。简而言之,DQRA 利用经验设计的深度神经网络来观察当前网络状态来调度网络的需求,然后通过保留量子位的最短路径算法进行路由。DQRA 通过使用明确设计的奖励函数来训练,以实现最大化每个路由窗口中已解析请求的数量的目标。我们的实验研究表明,在量子比特受限的网格网络中,DQRA 平均能够将成功路由请求的比率保持在 80% 以上,在极端条件下则保持在 60% 左右,即每个节点在一个窗口内只能充当一次中继器。此外,我们表明,就量子网络的大小而言,DQRA 的复杂性和计算时间是多项式的。索引术语 — 量子网络路由、深度强化学习、量子网络、深度学习。
进行了一项研究,以审查车速在道路交通事故、速度限制、执法和行为以及环境中的作用。首先对国际文献进行了审查,以突出海外发现和确定需要进一步研究和开发的问题。还访问了斯堪的纳维亚半岛、欧洲和美国的一些海外研究和政府机构,以获得有关这些国家正在开展的问题和研究的第一手知识。随后组织了一次会议,有 45 名具有研究、政府权力和驾驶背景的澳大利亚专家以及来自瑞典的主讲人参加,以确定澳大利亚当前的问题和议题。从这次广泛的审查中,确定了 22 个需要进一步研究的项目和 12 个行动项目,并根据它们对减少与速度有关的交通事故的重要性和价值对其进行了优先排序。未来需要研究的突出课题是开发和利用感知对策:限速区的可信度、道路设计和行驶速度、速度和碰撞的参与度以及行为相关性、本地区域交通管理 (LATM) 设备的有效性、执法容忍度和行驶速度、限速变化的安全后果以及更多的行驶速度和碰撞速度数据。未来行动计划的优先事项包括更多地使用低成本感知道路处理、汽车最高限速器试验计划。需要改变社区对超速的态度、建立澳大利亚范围内的限速专家系统、限速区政策和实践宣传、在限速区增加重复标志以及广泛使用有效的减速技术。
小型量子处理器有助于使量子网络变得实用且对错误具有鲁棒性。例如,在基于测量的量子中继器中,多量子比特处理器可以净化纠缠[1-3],消除光子传输过程中由退相干引起的误差。小型处理器可用于生成某些容错通信方案 [5] 或盲量子计算 [6] 所需的簇状态 [4]。如果处理器之间能产生足够强的耦合,那么可扩展的分布式量子计算 [7,8] 将成为可能。适合制造小型量子处理器的物理系统与全尺寸量子计算的物理系统可能非常不同,全尺寸量子计算的主要关注点是扩展到大量量子比特。小型处理器可以优先考虑高量子比特互连性和强量子比特相互作用。这些特性表明系统内的量子比特彼此靠近,例如固体中的自旋簇。这些自旋团簇需要强光耦合,因为上述大多数小型处理器应用都是光学接口。此外,工作波长和带宽应与其他网络元件和光通道相匹配。这种光寻址自旋团簇系统的一个著名例子是金刚石中的氮空位 (NV) 中心与附近一组随机的 13 C 核自旋耦合 [9-11]。在本文中,我们提出了一种用于生成小型量子处理器的自旋团簇系统:稀土晶体中掺杂剂周围的稀土宿主离子(见图 1)。在这样的系统中可以解析数十个量子比特,而短的离子间距离意味着量子比特之间存在强相互作用。稀土离子具有光学可访问的超精细自旋态,具有较长的光学和自旋相干性
简介量子通信的成熟度及其提供的信息理论安全性已经在大都市网络1中找到了多个应用程序1,包括一些选举。2在长距离链接上研究量子通信标志着该技术进步的下一步。值得注意的是,纠缠具有比基于诱饵的量子密码学更长的距离生成安全钥匙的潜力。3,4纠缠还促进了设备独立的量子密钥分布(QKD),即使使用的设备由对手提供,也可以生成安全键。5,6测量设备独立QKD 7,8(MDI QKD)避免探测器中的侧通道,并承诺与基于纠缠的QKD相似的关键率的相似标度。尽管其实施有其自身的挑战,但MDI QKD已被证明超过404 km的光纤维。9此外,纠缠的分布允许纠缠纯净,这是实施量子中继器的基本组成部分。,由于即使是理想的量子中继器也容易损失,因此在最长距离内证明纠缠分布至关重要。这将使应用程序(例如QKD和分布式量子计算)在大都会长度尺度之外的距离上进行。从长远来看,我们认为纠缠分布将在未来的量子通信技术中发挥关键作用。11使用卫星,QKD既有距离记录又具有可信赖的节点10以及基于纠缠的QKD,并在卫星站和地面站之间建立了一个安全的钥匙,桥接距离为530 - 1000 km。
经典的长基线干涉法已成为确定恒星距离或成像光源的一种广泛接受的方法[1,2]。中心想法是确保两种或多个望远镜在两个或多个望远镜上的星光的连贯性,然后使用van cittert-zernike定理[3,4]来提取有关源的信息。这导致了许多显着的进步,包括使用射频望远镜[5,6]对黑洞的第一个观察,系外角直径估计[7]和PULSAR正确的运动测量[8]。然而,在光学频率中,这种类别干涉量技术的基本限制,例如量子射击噪声[9]和通过长基线传输过程中的恒星光子损失。量子增强的望远镜旨在通过采用量子信息理论[10]的概念来克服这些困难,其中一些在实验中已实施,包括长距离纠缠分配[11,12],量子逻辑术语[13,14]和Quan-Tum Tumm tum tum tum tum tum tum tum tum tum tum tum tum memories [15,16]。因此,使用这些Quantum资源设计干涉学设置变得吸引人。量子中继器的发展[17,18]激发了非本地设置的探索,以实现纠缠量子状态的可靠,长距离分布。一对望远镜的空间局部方案不允许将望远镜在望远镜位置之间进行物理地将望远镜收集的光进行。Gottesman等。Gottesman等。对于弱热光源(如星光),与非局部建议相比,在空间局部方案(如杂尼检测)等局部方案将始终提供有关源的信息[19]。[20]建议通过在望远镜之间建立量子中继器链接来克服长基线的传输损失问题的开创性建议[17],但是该方案需要一个
3. 关于 ZigBee 网络 3.1 ZigBee 网络 - 创建和工作 ZigBee 是基于 IEEE 802.15.4 标准的无线网络,其通信发生在 2.4 GHz 频段。该网络基于网状拓扑,允许非常大的范围和高可靠性。两个网络节点(设备)之间的直接通信最大范围在开放空间中约为 100m。 ZigBee 网络中包含的设备分为三种类型: - 协调器 - 每个网络中只能有一个这样的设备。它充当所有设备的连接节点; - 路由器(中继器) - 该设备由 230VAC 供电,功能类似于传统网络路由器,其任务是转发数据包并增加网络范围; - 终端设备 - 电池供电,将数据发送到与其连接的协调器(也通过路由器)。它通常会暂时处于休眠状态,这有助于降低能耗。 ZigBee 协议内置的安全性(ISO-27001 和 SSAE16 / ISAE 3402 Type II - SOC 2 认证)确保高传输可靠性、检测和消除传输错误以及既定优先级设备之间的连接。安全措施包括: - 使用唯一密钥对对设备进行身份验证; - 移动应用程序和设备之间的加密通信; - 数据加密 - 使用 TLS 加密的 HTTPS,使用 AES-128 加密的 UDP 通道; - 分层访问控制,以防止篡改一个设备威胁整个系统。 通过使用扩频信号的无线电传输,实现了在彼此相距很近的地方工作许多设备的能力。在 ZigBee 系统中工作的设备的主要优势是双向通信和最小化能耗,这在许多情况下允许它们由化学电池(碱性电池)供电。 正确创建 ZigBee 网络的四个简单步骤:1.
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。
引言如今,点对点量子密钥分发 (QKD) 已经成为商业现实。商用 QKD 系统的范围通常在光纤上为 100 公里。学术系统和新协议可以达到数百公里 1、2。中国墨子号卫星已经展示了与低地球轨道卫星的自由空间 QKD 链路 3。然而,单个点对点链路的范围仍然受到链路功率损耗的限制 4。为了扩展 QKD 的实际应用,有必要将范围扩展到全球 QKD 并提供更复杂的网络拓扑 5。随着量子中继器等新技术的出现,这种扩展的多功能性可以通过所谓的可信节点 (TN) 6 实现。在 TN 中,量子信号被测量并转换为经典信号。生成一个新的经典信号,转换为量子,然后发送到下一个节点。 TN 可用作中继,提供长距离 QKD,也可用作交换机,提供复杂的拓扑 5 。然而,由于 TN 包含经典信号,原则上可以被复制,因此 TN 内不存在量子安全性。必须信任 TN 并对其进行物理保护,以避免数据泄露 5 。因此,出于安全目的,TN 代表了完整的端到端 QKD 传输中的薄弱环节。在本文中,术语“长距离 QKD”是指全球 QKD,即在地球上任意两点之间部署和实施 QKD 的能力。最近,英国知识产权局向 Arqit Ltd. 公司授予了专利号 GB2590064(https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064)我们还将本专利中描述的协议称为 ARQ19 协议。本专利旨在提供没有 TN 的长距离 QKD。根据这些说法,现在可以使用不受信任的卫星实现全球 QKD。这将改变 QKD 的游戏规则。因此,调查这些说法显然很重要。不幸的是,据我们所知,它们尚未在任何科学期刊上通过随附的公开披露得到验证。因此,我们的分析基于已发布的 ARQ19 专利和 Arqit 在美国证券交易委员会 (SEC) 提交的 20-F 年度报告 (https://www.sec.gov/Archives/edgar/data/0001859690/000110465921150276/arqq-20210930x20f.htm)。本报告将