(3)BVAG对EXA规则6字母的响应 - 关于检查程序和时间表的书面提交(2024年7月),包括建议的地点进行现场检查和/或无人陪伴,并附加了其他太阳能计划的地图和桌子,该地图和桌子列出了附近地区。
我们使用两种互补视觉方式探索视觉增强学习(RL):基于框架的RGB凸轮和基于事件的动态视觉传感器(DVS)。iSTING多模式视觉RL方法在有效提取与任务相关的信息时经常遇到挑战。为了解决这个问题,我们提出了用于视觉RL的分解多模式表示(DMR)框架。它将输入分为三个不同的组成部分:与任务相关的效果(共同功能),RGB特异性噪声和DVS特异性噪声。共同创作表示与RL任务相关的两种模式中的完整信息;这两个噪声组件都受到数据重构损失以避免信息泄漏的约束,与共同创作形成对比,以最大程度地差异。广泛的经验表明,通过明确分开不同信息的类型,我们的方法可实现与最先进的方法相比,实质性改善的政策绩效。
机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
许多科学家 [Lynch,1960;Piaget 和 Inhelder,1967;Siegel 和 White,1975] 已经观察到认知地图被组织成连续的层,并提出对大规模环境的有用且有力的描述的核心要素是拓扑描述。分层模型包括从局部感官信息中识别和辨认地标和地点;路线控制知识(从一个地方到另一个地方的过程);连通性、顺序和包含的拓扑模型;以及形状、距离、方向、方位以及局部和全局坐标系的度量描述。看来,认知地图的分层结构是人类在大规模空间中稳健表现的原因。我们的方法试图将这些方法应用于机器人探索和地图学习问题。我们定性方法中对环境的核心描述是拓扑模型,如 TOUR 模型 [Kuipers,1978]。该模型由一组节点和弧组成,其中节点代表环境中可识别的位置,弧代表连接它们的行进路径。节点和弧是根据机器人的感觉运动控制能力程序性定义的。度量信息添加到拓扑模型之上。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
学习表征捕获对世界的非常基本的理解是机器学习的关键挑战。隐藏在数据中的解释因素的层次结构是如此一般的表示,并且可以通过分层VAE实现。然而,培训层次的VAE总是遭受“后塌陷”的苦难,其中数据信息很难传播到更高级别的潜在变量,因此导致层次结构不良。为了解决这个问题,我们首先是从信息理论的角度来减轻后层崩溃的现有方法的缺点,然后突出了正规化的必要性,即在维持不同级别之间的依赖性的同时,将数据信息明确传播到高级潜在变量。这自然会导致提出高级潜在表示作为顺序决策过程的推断,这可能受益于应用强化学习(RL)。将RL的目标与正规化的目标保持一致,我们首先引入了一条跳过的途径,以获取奖励,以评估潜在的潜在表示的信息内容,然后基于它的Q-VALUE函数可能具有正规化的一致优化方向。最后,策略梯度是典型的RL方法之一,用于训练层次VAE,而无需引入梯度估计器。1。简介实验结果坚定地支持我们的分析,并证明我们提出的方法有效地减轻了后塌陷问题,学习了信息的层次结构,获得了可解释的潜在表示,并且在下游任务中明显优于其他基于层次的VAE方法。
摘要 光标、头像、虚拟手或工具以及其他渲染的图形对象使用户能够与 PC、游戏机或虚拟现实系统等计算机进行交互。我们从用户的角度在“用户表征”的统一概念下分析这些不同对象的作用。这些表征是虚拟对象,它们人为地延伸了用户的身体,使他们能够通过执行不断映射到其用户表征的运动动作来操纵虚拟环境。在本文中,我们确定了一组与不同用户表征相关的概念,并对用户表征的控制和主观体验背后的多感官和认知因素进行了多学科回顾。这些概念包括视觉外观、多模态反馈、主动感、输入法、近体空间、视觉视角和身体所有权。我们进一步为这些概念提出了研究议程,这可以引导人机交互社区从更广泛的视角了解用户如何通过他们的用户表征进行感知和交互。
我们介绍了Florence-2,这是一个新型视觉基础模型,具有统一的,及时的代表,用于量级计算机视觉和视觉语言任务。在转移学习方面表现出色时,他们努力通过简单的说明执行各种任务,这意味着处理各种空间层次结构和语义粒度的复杂性。Florence-2旨在将文本推出作为任务说明,并以文本形式产生理想的结果,无论是限制,对象检测,接地还是分割。这种多任务学习设置需要大规模的高质量注释数据。为此,我们使用自动化图像注释和改进的迭代策略,共同开发了1.26亿张图像的FLD-5B。我们采用了一个序列结构,以训练佛罗伦萨-2,以执行多功能和全面的视觉任务。对众多任务的广泛评估表明,佛罗伦萨-2是具有未曾预性零击和微调功能的强大愿景基础模型竞争者。
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。