此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]
结果:我们确定了 46 项研究(N = 6543);在许多研究中,与疲劳的关联是次要的或子分析(28.3%)。成像参数通过八个变量进行评估:病变侧化、病变位置、病变体积、脑萎缩、梗塞数量、脑微出血、白质高信号 (WMH) 和网络测量。大多数变量没有确凿证据表明与疲劳有任何关联。在可能的情况下,荟萃分析表明以下因素与 PSF 无关;左侧病变部位(OR:0.88,95% CI(0.64,1. 22)(p = 0.45))、脑幕下病变部位(OR:1.83,95% CI(0.63,5.32)(p = 0.27))和 WMH(OR:1.21,95% CI(0.84,1.75)(p = 0.29))。许多研究对病变部位进行了评估,结果不一;只有一项研究使用了体素症状病变映射 (VSLM)。一些小型研究表明功能性大脑网络(即额叶、额叶-纹状体-丘脑和感觉处理网络)的改变与 PSF 之间存在关联。
随着石化、采矿、制药、纺织、金属加工和食品工业的需求不断增长,也增加了因石油和石油源污染物而浪费水的风险。[1] 此外,石油勘探和开采、炼制和运输过程中的漏油事件对水污染构成了高度威胁。[2,3] 人们开发并使用了各种方法来处理油污染水,包括机械分离、化学处理、生物处理、膜过滤和吸附。[4–6] 在所有这些方法中,通过工程表面吸附油来清理油是由于其易于使用、去除效率高、成本低以及环境友好而最受欢迎的方法。[7] 用于清理油的理想吸附剂材料应同时具有高疏水性和亲油性。 [8] 不同类型的具有这种双重润湿性(同时表现出疏水性和亲油性)的材料已被提出用于选择性吸附
对介导患者特定治疗反应的信号通路进行机制建模有助于揭示耐药机制和改进治疗策略。然而,为患者建立这样的模型,特别是为实体恶性肿瘤患者建立这样的模型具有挑战性。建立这些模型的一个主要障碍是可用的材料有限,这阻碍了大规模扰动数据的生成。在这里,我们提出了一种方法,将使用微流体的癌症活检离体高通量筛选与基于逻辑的建模结合起来,以生成患者特定的外在和内在凋亡信号通路动态模型。我们使用得到的模型来研究胰腺癌患者的异质性,显示出尤其是在 PI 3 K-Akt 通路中的差异。模型参数的变化很好地反映了不同的肿瘤阶段。最后,我们使用我们的动态模型有效地预测了新的个性化组合治疗。我们的结果表明,微流体实验和数学模型的结合可以成为癌症精准医疗的新工具。
摘要。链球菌thoraltensis(胸骨链球菌)是通常存在于四倍哺乳动物的肠道微生物组中的细菌。胸链菌对人类不被认为是致病性的。然而,在绒毛膜炎,产后肺炎和未知来源的发烧的情况下,几份报告将其确定为病因学剂。此外,在有或没有心脏瓣膜替代的心内膜炎患者的样品中已经分离出来。本研究描述了一名38岁健康的女性患者的病例,该患者经历了急性腹痛,并伴有排尿症,囊泡性心理和便秘。计算机断层扫描显示,由于肿瘤的脓肿,导致了恢复的尿囊肿肿块。手术引流后,微生物学培养物将胸链球链球链球菌视为病因。因此,患者接受了强力霉素和甲状腺脱甲酸唑啉的治疗,并对治疗表现出成功的反应。人类感染中胸链球菌的发生增加表明该细菌流行病学特征的潜在变化。人类活动可能直接或间接地对新病原体的出现做出贡献。
桌面。清洁。自动化。G1/F1 将 GENERA 专用眼镜工作流程和自动化带到您的桌面。它使用经过验证的眼镜生产材料和基于盒的材料单元来储存树脂(数字醋酸纤维)。G1/F1 利用 GENERA 穿梭技术实现清洁安全的工作流程。F1 使用汞闪光灯在惰性气体中固化部件。镜框在两个专门设计用于与 IPA 安全使用的清洁槽中清洁。整个工作流程均采用 RFID 跟踪。材料单元与材料盒相结合,确保清洁和安全的处理。材料单元由 G1 自动打开并自动分配。集成的重涂器有助于混合树脂桶内的树脂,以确保一致的打印效果。树脂桶可以加热并跟踪低树脂水平以及薄膜的寿命。打印完成后,G1 自动将部件存放在穿梭机中。然后,F1 自动对框架进行后处理。
具有 Kagome 晶格的量子材料中独特的电子行为 [5] 和磁性行为 [6,7] 使得 Kagome 材料成为一个极其有趣的平台。这些有趣的量子态是由于电子能带结构和磁序的非平凡拓扑、强电子关联和受挫而出现的。探索这些材料中电子能带结构和相应磁性之间的相互作用,发现了大块狄拉克半金属 Fe 3 Sn 2 、[5] 外尔半金属 Mn 3 X(X = Sn,Ge)[8] 和 Co 3 Sn 2 S 2 、[9],它们表现出本征陈量子相、较大的异常霍尔效应和手性异常。[5,10,11] 一个特别有趣的例子是磁体 RMn 6 Sn 6(R = 稀土元素),它根据特定 R 元素和受挫 Mn Kagome 晶格之间的相互作用而具有几种磁序。 [12–14] 在室温下,Tb 和 Mn 磁矩位于不同的 Kagome 子晶格上,且呈非平面反平行排列的亚铁磁结构已被证明能有效实现具有拓扑
“委员会可同意回购根据本条销售协议分发的任何特殊核材料,这些材料在根据合作协议开展的活动过程中没有被消耗掉,或这些特殊核材料辐照后剩余的任何铀,回购价格不得超过委员会在向委员会交付此类材料时对类似特殊核材料或铀的有效销售价格。委员会还可同意在符合合作协议期限内购买在美国境外的核反应堆中通过使用根据本条租赁或出售的特殊核材料生产的特殊核材料。根据任何此类协议,委员会应仅购买在委员会根据第 56 条确定的由第 104 条授权的人在核反应堆中生产的相同材料的有效购买价格的任何期间交付给委员会的材料,并且支付的价格应为委员会确定的价格,并且有效与提交给委员会的材料相同。”
社会的发展取决于可用的功能材料以及人口所产生的系统。我们可以说,先进的文明的发展是同时发生的,这是由于功能材料的发展。在文明的开头,人类用来直接从自然中提取材料并处理它们以供个人使用。稍后,我们学会了如何通过各种化学反应在自然界中发现的材料。由于引入和发展各种科学领域,这种伴侣的创造很快就发展起来,这些科学领域主要在上个世纪进行。有机化学,无机化学,聚合物化学,超分子化学,坐标化学和各种材料科学领域已使创造了改善人类生活的功能材料。在开发过程中,我们了解到材料的功能不仅取决于材料本身,还取决于其内部结构的精确度。这是纳米技术引发革命的地方。纳米技术已使对物体在纳米级级别的性质进行观察和分析,直到分子
过去曾对赤道电离层不规则性进行过研究,并产生了有关电离层物理和过程的有趣见解。在这里,我们介绍了使用印度星座导航 (NavIC) 对赤道电离异常 (EIA) 附近电离层进行长期研究的初步结果。我们已经根据不同动态频率的功率谱密度表征了电离层不规则性。其形式类似于 [1-3] 使用电离层相位屏建模所建议的形式。利用位于 EIA 北部山脊附近的印多尔上空的 NavIC L5 (1176.45 MHz) 信号,对 C/N o (dB-Hz) 变化进行了观测。我们展示了从一天(2017 年 12 月 4 日)的闪烁观测中获得的一些初步结果,作为概念验证研究。这是 NavIC 首次在该地区开展此类研究。通过功率谱密度分析,我们证明了 NavIC 能够长期探测该地区的此类不规则现象,并且对预测未来此类事件具有重要意义。
