大幅减少粮食损失需要确定战略措施。大多数损失通常由几个根本原因造成。请考虑帕累托原则:20% 的问题通常会导致 80% 的问题。因此,建议完成流程级测量并准备一份粮食损失平衡表。然后更详细地检查造成总粮食损失的更重要因素,以确定根本原因和潜在补救措施。然后与相关利益相关者讨论这些补救措施,以确保就战略措施及其实施方式达成广泛共识。
响应氮(N)的上述和地下生物量的有效分配对于在亚最佳条件下植物的生产力至关重要。在具有浅根系统的菠菜,短生长周期和氮的使用效率下,尤其是必不可少的。在这项研究中,我们进行了全基因组关联研究(GWAS),以使用具有不同遗传背景的菠菜饰品来探索N诱导的变化。 ,我们评估了表型变化,因为在受控环境下,在Soilless介质中,使用201个菠菜饰品在芽和根生物量的变化中响应N。 使用60,940个全基因组重新定位的SNP,在201菠菜加入中对芽和根生物量的百分比变化进行了GWA。 三个SNP标记,CHR4_28292655,CHR6_1531056和CHR6_379666006染色体4和6上的CHR6_37966006与根重量的变化显着相关,两个SNP标记,ChR2_18480277和CHR2_18480277和CHR4_4_4_4_4_4_7598760上的chromososososososososs 2和4%,以及4%和4%的人2和4; 这项研究的结果为改善总生物量的分配所需的遗传研究基础,并提供了一种资源来识别分子标记物,以通过标记辅助选择或菠菜育种计划中的基因组选择来增强N的吸收。在这项研究中,我们进行了全基因组关联研究(GWAS),以使用具有不同遗传背景的菠菜饰品来探索N诱导的变化。,我们评估了表型变化,因为在受控环境下,在Soilless介质中,使用201个菠菜饰品在芽和根生物量的变化中响应N。使用60,940个全基因组重新定位的SNP,在201菠菜加入中对芽和根生物量的百分比变化进行了GWA。三个SNP标记,CHR4_28292655,CHR6_1531056和CHR6_379666006染色体4和6上的CHR6_37966006与根重量的变化显着相关,两个SNP标记,ChR2_18480277和CHR2_18480277和CHR4_4_4_4_4_4_7598760上的chromososososososososs 2和4%,以及4%和4%的人2和4;这项研究的结果为改善总生物量的分配所需的遗传研究基础,并提供了一种资源来识别分子标记物,以通过标记辅助选择或菠菜育种计划中的基因组选择来增强N的吸收。
缺水应激是影响植物(尤其是葡萄藤的生理和生长反应)最常见的环境压力之一。然而,葡萄藤品种和物种在对水胁迫的耐受性方面有所不同。为了识别最宽容的葡萄茎,使用了两个因子的阶乘随机块设计。第一个因素包括易感简历。Sultana(V。Vinifera L.)接枝移植到三个砧木(Yaghouti,Kolahdari和140 Ru)上,第二个因素是三个水平的水应力潜力(对照,-1 MPA和-2 MPA)。研究了生理参数,例如丙二醛(MDA),电泄漏(EL),脯氨酸,可溶性糖,蛋白质,光合色素和抗氧化剂。我们的结果表明,增加的水应力增强了H 2 O 2,MDA,EL,脯氨酸,可溶性糖和可溶性蛋白,同时减少叶绿素(CHL)和类胡萝卜素含量,生长参数和植物干重。谷胱甘肽过氧化物酶(GPX)的活性响应缺水而增强,而过氧化杀起酶(CAT)和抗坏血酸酯过氧化物酶(APX)酶在-1 MPa时表现出较高的活性,然后在最低水位(-2 MPA)下降低。此外,暴露于水胁迫的140个RU砧木具有较低水平的MDA,H 2 O 2和EL,更高的Chl(A,B),类胡萝卜素,APX和GPX活性以及较高的芽干重。总体而言,这三个砧木的生理和形态反应提出,将商业苏丹娜品种嫁接到耐旱的砧木上,例如140 RU,是提高干旱胁迫耐受性的有效策略。
该技术以天然抗体生物学为基础,旨在诱导抗体六聚体(六个簇)在与细胞表面的靶标结合后形成。据信这可以增强抗体的自然杀伤能力,同时保留其常规结构和特异性。
整个项目的创新元素是传播与科学研究之间的紧密相互作用,这些元素通过创建“ Biosil”平台结合在一起。实际上,该平台实际上不仅将收集从以前的调查和该项目的数据中收集数据,而且可以通过从公民科学的地理摄影集合中得出的数据来实施。在基础研究中,多学科的方法不再在其各个组成部分中考虑,而是以综合的方式来研究其习惯结构(例如恋童癖和微生物,自由基成分)和epigea(例如<分为植被)。这种“内在”视觉与土壤的质量和使用有关创建创新的综合土壤监测系统的质量和使用有关,该系统将由各种兴趣持有人使用,并将用于保护和恢复行动。在将剑恢复为蓝莓的动作中,假定它在去除入侵物种和播种技术方面都具有创新的技术。
社会经济条件 北三角地区的土地所有权和经济权力历来集中在少数精英阶层手中,留下了极端不平等和普遍贫困的遗产。尽管 20 世纪 80 年代和 90 年代的市场导向型经济改革带来了更大的宏观经济稳定性,但温和的经济增长并没有改善该地区许多人的生活条件。分析人士预计,北三角地区的劳动年龄人口将在未来二十年继续增长,因为大约 44% 的危地马拉人、42% 的洪都拉斯人和 36% 的萨尔瓦多人年龄在 20 岁以下。如果没有更好的就业机会,那些进入劳动力市场的人可能不得不在寻求不受监管的非正规部门有限且不稳定的就业机会或寻找其他机会之间做出选择。
目的:本研究旨在评估和评价沙特阿拉伯阿西尔地区牙髓科医师对下颌第一磨牙进行的根管填充 (RCF) 的质量。参与者和方法:对由具有不同资质和经验的牙髓科医师治疗的 18 岁以上男女患者进行了横断面放射学研究。治疗在相似的手术区域、材料和设备下进行。根据国际标准以长度、密度和锥度的形式评估 X 射线的质量。这些 X 射线照片由两名具有相似证书的评估员评估。计算了检查者间的一致性。卡方或 Fisher 精确检验用于检验组间和质量参数之间的显著差异。p < 0.05 被视为具有统计学意义的截止点。结果:本放射学研究共评估了 74 颗下颌磨牙,共治疗了 224 个根管。记录到的 RCF 锥度、密度和锥度质量的合格百分比分别为 77%、93% 和 91%,整体 RCF 质量可接受为 87%。在锥度方面,左右侧之间存在显著差异(p = 0.035),在密度方面,不同年限和不同根管位置之间的差异也显著(两个变量的 p = 0.040)。结论:不同证书的牙髓科医师对下颌第一磨牙进行的 RCF 在密度和锥度方面质量较高,但长度适中。整体 RCF 质量是可以接受的。临床意义:对接受根管治疗的牙齿进行术后根尖 X 光检查是维持高标准患者服务的一个积极方面。应按照推荐教科书中关于长度、锥度和密度的规定进行。关键词:牙髓科医师,下颌第一磨牙,根管治疗质量。 《当代牙科实践杂志》(2024):10.5005/jp-journals-10024-3666
摘要棕榈油(Elaeis Guineensis Jacq。)是一种可以将二氧化碳转移到土壤中的碳存储中的农作物。根修剪也在增强植物中的碳库存中起作用。这项研究旨在评估根修剪对油棕榈碳储量的影响及其与营养吸收的关联。这项研究使用了四岁的油棕榈植物进行了六个月的时间。采用了具有两个因素的嵌套实验设计。第一个因素是主要的地块,涉及三个根切割深度(0、10和20厘米),而第二个因子构成了四个根切割强度(0%,25%,50%和75%)。调查结果表明,根修剪增加了植物的碳库存,尽管与对照相比,植物的碳量保持较低。下午记录了最高的CO 2发射,特别是在75%强度的20 cm根切割处理中,尺寸为4.3μmol·M -2·SEC -1。最大的碳储备,16.98吨·C·Ha -1·年-1年,在20 cm的深度和75%的强度下观察到,相关性为正相关。
1 Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China 2 Water Resources Section, Delft University of Technology, Delft, the Netherlands 3 Stockholm Resilience Centre (SRC), Stockholm University, Stockholm, Sweden 4 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 5 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany 6 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland 7 Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 8 Key Laboratory of Hydrometeorological Disaster机制和警告,水资源部/水文与水资源学院,南京信息科学技术大学,NANJING 210044,中国9东部森林环境威胁评估中心,USDA森林服务南部研究站,研究三角研究站,Triangle Park,Triangle Park,Triangle Park,NC 27709,USA