日益增加的气候波动威胁到世界粮食的确定性,因为这是限制农业生产的非生物和生物压力的主要驱动因素(Rosenzweig等,2014)。的非生物应力,例如过度冷或热,降水或干旱的发作以及土壤盐度或苏迪克,代表了植物在气候变化中经历的一些最常见的压力(Ashraf et al。,2018; Barmukh et al。,2022; Soren等,2020; Soren et al。,2020; Varshey; Varshey,Barmuke,barmukh et al a al al a al an a al a al a al an a al a al。温度波动,尤其是极度冷的发作,可能导致主要谷物作物(例如小麦(Triticum aestivum),大米(Oryza sativa)和玉米(Zea Mays L.))的寒冷损伤。这些农作物不是自然地适应或未专门为这种冷条件而繁殖(Dolferus,2014; Janksa等,2010; Solanke等,2008)。在零下条件下,冰晶体的形成,生物膜的渗透性改变以及细胞内或细胞外的活性氧(ROS)的产生。These changes result in a combination of symptoms like poor ger- mination, reduced seedling vigor or stunted growth, reduced leaf size, leaf yellowing and withering, reduced tillering, poor root proliferation, disturbed plant water relations, impeded nutrient uptake, premature heading, increased seed abortion, and reduced seed size leading to reduced yield (Andaya &, Tai 2006 ; Hassan et al., 2021 ; Li et Al。,2015年; Oliver等人,2002年;
频道,导致兴奋性和超极化降低。当代分类基于其亚基组成,跨膜域的数量和功能特性,识别K +通道的三到五个亚型的任何地方。四个最广泛认识的亚型是:(a)电压门控k通道(k v),(b)钙(Ca ++)激活的K通道(k CA),(c)内部矫正K通道(K IR)和(d)两孔域K通道(k 2p)。除此之外,还有一些由特定分子激活的配体K通道,例如环状核苷酸(Kuang等,2015)。k +通道在几个大脑区域都高度表达,包括额叶皮层,基底神经节,海马和杏仁核,在那里它们影响神经元填充,发射器释放和神经可塑性。涉及大脑中K +通道相关突变的孟德尔疾病与发育延迟,癫痫和症状有关,表明焦虑,多动症和自闭症谱系障碍(Alam等,2023)。这使研究人员研究了K +通道功能对非芒德尔精神病综合症的可能贡献。此类研究发现了精神分裂症,抑郁症和自闭症谱系障碍中K +通道活性改变的可能证据。这增加了旨在调节这些通道功能的新型治疗方法的可能性(Vukadinovic和Rosenzweig,2012; Cheng等,2021; Meshkat等,2024)。最近的研究强调了K +通道在与焦虑和恐惧相关的过程中的重要性。在动物模型中,已经发现K V通道在恐惧条件和类似焦虑的行为中起着关键作用(Stubbendor Q.等,2023; Page and Coutellier,2024)。在人类中,编码K V和K IR通道亚基的基因中的多态性与青年人的焦虑症脆弱性有关(Thapaliya等,2023)。本文研究了最近的翻译证据,暗示了创伤后应激障碍发病机理中K +通道功能的变化。
安全”会议在华盛顿特区美国参议院农业听力室委员会举行。华盛顿特区(2025年1月14日) - 超过150个诺贝尔奖和世界粮食奖获得者提出了前所未有的财务和政治支持请求,以开发“月经”技术,最大的机会在未来25年内避免避免饥饿的灾难。在诺贝尔奖和世界食品奖的153个获奖者签署的一封公开信中,该签署人警告说,世界“甚至不接近”满足未来食品需求,估计有7亿人今天饿了,还有15亿人在2050年喂食。这封信预测人类在本世纪中叶面临“更加不安全,不稳定的世界”,除非国际社会加大了对最新研究和创新的支持。引用包括气候变化,冲突和市场压力在内的挑战,呼吁“行星友好的“月经”努力,导致粮食和营养安全的粮食生产促进了实质性的,而不仅仅是渐进的努力。”在这些信中认可这封信的是罗伯特·伍德罗·威尔逊(Robert Woodrow Wilson)。签署人还包括约瑟夫·E·斯蒂格利茨(Joseph E. Stiglitz),他于2001年获得诺贝尔经济奖,并获得了2007年诺贝尔和平奖的政府间气候变化小组。Emmanuelle Charpentier和Jennifer Doudna在2020年因发现CRISPR/CAS9遗传剪刀而获得了诺贝尔化学奖,他们也签署了这封信。上诉是由2024年联合世界粮食奖获得者的卡里·福勒(Cary Fowler)协调的,他也是即将卸任的全球粮食安全特使。其他世界食品奖获得者加入了NASA气候科学家Cynthia Rosenzweig,埃塞俄比亚裔美国人植物育种者和美国国家科学媒体的获得者Gebisa Ejeta和非洲开发银行总裁Akinwumi Adesina。
2015年全球基础设施支出总计2.3万亿美元(牛津经济学,2017年)。尽管对于经济增长至关重要,但基础设施的扩张却缩小了人类活动和脆弱的生态系统之间的边界。在热带地区,侵占的生态威胁尤其急剧,占地三分之二的生物多样性,但有60%以上的全球基础设施支出发生(FAO和UNEP,2020年)。这是由于数百万的土著人民(已经支持了数千年的生物多样性)所受到的事实而受到了影响。经济学家长期以来一直在寻求如何降低发展的环境成本(Grossman and Krueger,1995; Dasgupta等人。,2002年; Copeland and Taylor,2004年)。生物多样性在本文中很少受到关注(Frank and Schlenker,2016年),更不用说基层解决方案来平衡发展和保护。因此,填补这一空白不仅需要对基础设施的生态威胁的估计,而且还需要地方机构中和中和的作用。我的第一个目标是更深入地了解基础设施扩展导致生物多样性损失的程度。我将其称为基础设施 - 双性恋多样性折衷。第二个目标是调查分散森林治理在减轻权衡方面的作用。更好地了解这些社会生态和制度过程可以帮助各国实现发展和保护的双重目标。广泛的环境是热带地区,在其中发生了一半以上的全球森林砍伐(Pacheco等人,2021)。尽管记录了生态增长的快速增长,但印度尤其避免了广泛的森林损失(印度森林调查,2019年)。目前尚不清楚这是由于森林覆盖物的植树或改变的定义所致。即使发展确实使森林毫发无损,重要的居住物种仍可能受到威胁并需要政策关注。这种物种难以捉摸的测量已导致生物多样性在以前的研究中被过度研究(Foster和Rosenzweig,2003; Burgess等人。,2012年)。本文的第一部分估计了2015 - 2020年之间印度森林的基础设施 - 双性恋多样性的权衡。这是一个有价值的设置,原因有三个。首先,印度是地球上最多的生物多样性国家之一,占全球生物视为的8%,占鸟类多样性的12%(Venkataraman和Sivaperuman,2018年; Jayadevan等人。,2016年)。第二,印度的生物多样性是由活跃的“公民科学家”记录的,他们在特定的物种上进行了观察(例如ebird)或一般(例如inaturalist)平台。印度拥有任何发展中国家的最高eBird会员资格,其地理编码上载是一种新的,高分辨率的生物多样性存储库,这是文学文献中无与伦比的。第三,印度公开报告基础设施森林侵占。森林砍伐
这些评估的标志性输出是“燃烧的余烬”图。燃烧的余烬首先在第三次评估报告中使用,以形象化关注的原因,这些原因构成了与气候变化相关的影响以及对各个系统和部门的风险。在这些图中,颜色转变显示出对人类和生态系统的评估风险水平的变化,这是气候变化的函数
Wood,H Shonna Yin,William T. Zempsky,Emily Zimmerman,Benard P. Dreyer和Recover-Pediatric Consortium
Wood 18,H。Shonna Yin 114,William T. Zempsky 115,Emily Zimmerman 116,Benard P. Dreyer 1,代表Recover-Pediatric Consortium¶
Wood 18,H。Shonna Yin 114,William T. Zempsky 115,Emily Zimmerman 116,Benard P. Dreyer 1,代表Recover-Pediatric Consortium¶
