摘要。我们使用波动光学模拟来研究网格采样方面的分支点密度(即瞳孔相位函数内的分支点数量)。这些波动光学模拟的目标是模拟平面波在均匀湍流中的传播,包括使用希尔谱建模的有限内尺度的影响和不受有限内尺度的影响。实际上,网格采样为波动光学模拟中的分支点分辨率提供了衡量标准,而 Rytov 数、Fried 相干直径和等晕角则为设置和探索相关的深度湍流条件提供了参数。通过蒙特卡罗平均,结果表明,在没有有限内尺度的影响的情况下,分支点密度在充分的网格采样下无限制地增长。然而,结果还表明,随着内尺度尺寸的增加,这种无界增长 (1) 会随着 Rytov 数、Fried 相干直径和等晕角的强度增加而显著减小,并且 (2) 会随着网格采样的充分而饱和。这些发现意味着未来的发展需要包括有限内尺度的影响,以准确模拟自适应光学中分支点问题的多面性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.61.4.044104]
1。Rytov,Sergei Mikhailovich(1953)。“ [电波动和热辐射理论]”。科学学院出版社(俄语)。2。Emslie,A。G.(1961)。“通过紧密间隔的盾牌传递辐射”。3。Cravalho,E。G。; Tien,C.L。; Caren,R。P.(1967)。“小间距对两个介电辐射转移的影响”。传热杂志。89(4):351–358。 doi:10.1115/1.3614396。 4。 domoto,G。a。; Tien,C。L.(1970)。 “平行金属表面之间辐射转移的厚膜分析”。 传热杂志。 92(3):399–404。DOI:10.1115/1.3449675。 5。 Boehm,R。F。; Tien,C。L.(1970)。 “平行金属表面之间辐射转移的小间距分析”。 传热杂志。 92(3):405–411。doi:10.1115/1.3449676。89(4):351–358。doi:10.1115/1.3614396。4。domoto,G。a。; Tien,C。L.(1970)。“平行金属表面之间辐射转移的厚膜分析”。传热杂志。92(3):399–404。DOI:10.1115/1.3449675。5。Boehm,R。F。; Tien,C。L.(1970)。 “平行金属表面之间辐射转移的小间距分析”。 传热杂志。 92(3):405–411。doi:10.1115/1.3449676。Boehm,R。F。; Tien,C。L.(1970)。“平行金属表面之间辐射转移的小间距分析”。传热杂志。92(3):405–411。doi:10.1115/1.3449676。
列出了针对奇异状态及其特性的纳米光共振系统的基本效应。与晶格的几何形状和材料组成密切相关,在光谱中出现谐音的明亮木 - 纳尔和非谐音的暗通道。明亮的状态对应于高反射率引导模式共振(GMR),而暗通道代表连续体(BIC)中的结合状态。即使在简单的系统中,具有可调带宽的奇异状态也是孤立的光谱线,这些频谱线与其他共振特征广泛分离。在适度的晶格调制下,随之而来的是泄漏的频段元数据,融合了模态频段并导致偏移黑色状态和反射性BIC,以及在高反射宽带内的跨媒介BIC。rytov-type有效培养基理论(EMT)被证明是描述,制定和理解共振光子系统中集体GMR/BIC基本面的有力手段。,此处显示了不对称场的废弃Rytov分析解决方案,以预测深色BIC状态基本上是针对相当大的调制水平的。等效EMT均匀膜的繁殖结构提供了对经常引用的嵌入BIC特征值的定量评估。作品以实验验证关键效应结束。
摘要。这篇由两部分组成的论文的第二部分使用波动光学模拟来研究与湍流和时间相关热晕 (TDTB) 相关的蒙特卡罗平均值。目标是研究湍流热晕相互作用 (TTBI)。在接近 1 μ m 的波长下,TTBI 会增加高功率激光束通过分布式大气像差传播时产生的建设性和破坏性干扰(即闪烁)的量。因此,我们使用球面波 Rytov 数、风清除周期数和畸变数来衡量模拟湍流和 TDTB 的强度。这些参数在给定具有恒定大气条件的传播路径时非常有用。此外,我们使用对数振幅方差和分支点密度来量化 TTBI 的影响。这些指标来自点源信标通过模拟湍流和 TDTB 从目标平面反向传播到源平面。总体而言,结果表明,由于 TTBI,对数振幅方差和分支点密度显著增加。这一结果对执行相位补偿的光束控制系统构成了重大问题。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081805]
一系列飞行试验展示出一种测量空对地倾斜路径上路径分辨光学湍流量(如 C 2 n)的新方法。本文介绍了数据采集试验,试验涉及两束激光束在 8 公里倾斜路径上在一个轨道空中平台和一个静止地面终端之间传播。地面和飞行中的测量数据同时收集,并使用差分倾斜方差 (DDTV) 技术计算 C 2 n 剖面。本文介绍了 DDTV 技术,该技术能够对湍流强度进行路径分辨测量,从而得到 C 2 n 剖面。得到的湍流剖面揭示了最靠近飞机的统计数据中被认为是来自飞机边界层的气动光学污染。因此,气动光学环境的污染可以相对于其余大气传播路径进行量化。最后,本文介绍了将测量的大气湍流剖面与最先进的大气模型进行比较的分析。这些分析超越了 C 2 n 比较,并展示了测量与建模在关键定向能系统传播参数方面的比较,例如格林伍德频率、相干直径、里托夫数、等晕角、泰勒频率、开环抖动和开环斯特列尔比。在空对地和地对空定向能系统的背景下分析了斜路径湍流。
在计算成像中,对象的定量物理特性是根据缩写范围的光学测量值估算的。导致散射的复杂光 - 物质相互作用受麦克斯韦方程的控制,或者在某些假设下,标量helmholtz方程式从与波长相比的物体中删除光弹性散射[1]。为了简化建模光学散射和估计对象性能的过程,已经进行了许多关于近似于标量Helmholtz方程的解决方案的研究。最原始的是投影近似,其中假定散射的场维持入射波前,例如平面或球形波,而attenua则和相位延迟会累积与穿过对象的射线的光路长度成比例的。当入射波前是平面或球形时,该假设会导致ra换变换公式,并且是计算机断层扫描的基础。当涉及到具有不可忽略的折射的相对较薄的对象时,所谓的单个散射近似(包括第一个出生和rytov方法)提供了更合适的描述[2]。随着对象变得密集且高度散射,正如预期的那样,即使是单个散射方法也开始失败,并且需要计算多个散射的模型。代表性的方法是Lippmann-Schinginger方程(LSE)[3-5],多切片方法[6-9]和梁传播方法(BPM)[10-13]和BORN SERIST [14,15]。多层和梁传播方法非常紧密地相关,重要的区别是前者是由求解的schrödinger方程激励的,而后者则是用于Helmholtz方程。可以从标量Helmholtz方程开始制定多个散射模型,但它们依赖于差异
用于定向能和自由空间光通信应用的激光束在通过大气传播时可能会因光学湍流而严重扭曲。这些扭曲主要源于大气边界层,该边界层通常延伸至约 2 公里高,包含大气质量的 75%。其影响包括光束偏移、光束增宽和辐照度波动。自适应光学技术的使用可以减轻湍流的影响,此类系统在天文应用中广为人知,但在定向能应用中的实现和性能仍然不太为人所知。任何自适应光学系统的目标都是通过使用波前传感器测量误差、计算适当的校正并将此校正应用于可变形镜来消除光路变化导致的光波前扭曲。为了满足时间带宽要求,该反馈回路每秒执行数百次。要确定自适应光学系统的特性,必须模拟大气湍流对波前的影响。激光系统性能的评估取决于传播预测代码中使用的大气模型的精度。经过几十年的研究,一些分析理论例如几何光学 1 、Rytov方法和马尔可夫近似 2-4 已经发展起来,用于计算激光束传播的特性。但这些方法在某些条件下是近似的,因此它们的适用性有限,并且闪烁统计数据的理论计算非常困难,特别是当强度波动变大时。因此,开发了数值方法来更真实地表示大气湍流对激光束传播的影响。这些方法被称为光束传播方法 5 。这些方法的其他名称是分步傅里叶技术 6 和随机相位屏方法 7,8 。这里我们介绍激光束传播代码 LAtmoSim,它使我们能够评估大气对激光束波前的影响,并通过使用上述方法确定 AO 系统的设计参数。在本文中,我们还介绍了预测大气湍流强度的工作成果。光学湍流强度的定量测量称为折射率结构参数 C n