MorningStar评分™用于托管产品(包括共同基金,可变年金和可变寿命子账户,交易所交易贸易资金,封闭式基金和单独的账户)的晨星评分™用于托管产品(包括共同基金,可变年金和可变寿命子)的晨星评级™。交易所贸易资金和开放式共同基金被认为是单人口。它是根据晨星风险的回报措施来计算的,该措施解释了托管产品的月度过剩性能的变化,更加重视下降变化和奖励一致的绩效。每个产品类别中的最高10%的产品获得5颗星,接下来的22.5%获得4星,接下来的35%获得3颗星,接下来的22.5%获得2颗星,而最低的10%则获得1星。托管产品的总体晨星评级来自与其三,五年和10年(如果适用)晨星评级指标相关的性能数字的加权平均值。权重为:36-59个月总回报的100%评级,60%的五年评级/40%的三年时间评级为60-119个月的总收益率,50%的10年评级/30%的五年期评级/20%的三年时间评级为120个月或更长时间的总收益。虽然10年的总体评级公式似乎给了10年期间的重量,但最近三年的期限实际上具有最大的影响,因为它均包含在所有三个评级期间。
固体电解质界面 (SEI) 是锂电池耐久性的关键,也与锂离子以外的多价电池有关。它的稳定性对于确保电池的高效运行至关重要,尤其是在电动汽车和高容量固定式储能系统等苛刻的环境中。不稳定的 SEI 会导致电池快速退化、容量损失和潜在的安全问题。我们的主要关注点是 SEI 的稳定性。感兴趣的主题包括但不限于以下内容:- 固体电解质界面 (SEI) - 锂电池 - 多价电池 - SEI 稳定性 - 电极-电解质界面 - 电解质添加剂 - 电化学技术 - 锂电镀 - 固态锂电池
摘要 - 特定的发射极标识(SEI)是一项有希望的技术,可以在不久的将来增强大量设备的访问安全性。在本文中,我们提出了一个可重构的智能表面(RIS)辅助SEI系统,其中合法发射器可以通过控制RIS的On-Off状态来自定义SEI期间的通道指纹。在不失去通用性的情况下,我们使用基于接收的信号强度(RSS)欺骗检测方法来分析所提出的体系结构的可行性。具体来说,基于RSS,我们得出了SEI的统计属性,并提供了一些有趣的见解,这些见解表明RIS辅助SEI理论上是可行的。然后,我们得出最佳检测阈值,以最大程度地提高呈现的性能指标。接下来,通过RIS辅助SEI原型平台上的概念验证实验验证了所提出系统的实际可行性。实验结果表明,当传输源分别在不同的位置和同一位置时,性能提高了3.5%和76%。
标准氢电极),代表基于锂的可充电电池的理想负电极。[1,2]然而,无法控制的树突形成[3,4]和连续的电解质耗竭[5]证明了它们的实际实现。固体电解质相(SEI)是定义这些问题的关键概念,因为它的性质从根本上控制了在电极表面发生的化学物质。[6,7]了解SEI组成与Li li树突生长和溶解的动态过程之间的关系对于调整SEI至关重要,这将允许高循环效率。SEI修饰的多种方法已表现出改善的表现性能,例如采用富含氟化物的电解质,[5,8,9]增加了电解质盐浓度,[10,11]预先构建人工SEI,[12-14]和tai-Loring log-Loring与添加剂的电解液。[15–17]在这些不同的方法中,已经表明,富含流感的SEI的产生是实现库仑效率提高的一致因素。[18]这种富含氟化物的相间大大减少了分离的,电隔离的“死锂”的形成,因此抑制了效率损失的主要原因。[19,20]然而,了解SEI对
寻求免责声明:数据由Seek提供,并包括Seek雇佣指数(SEI)。除非另有说明,否则所有数据均进行季节调整。应查看数据并将其视为独立信息,不应与任何其他信息一起汇总。数据以摘要形式提供,虽然已经在准备工作中进行了谨慎,但Seek毫不陈述其完整性或准确性。寻求明确的责任或对您对数据的使用或使用数据的使用不承担任何责任。SEI仅在报告的月份内发布的新作业广告,以提供所有分类中对劳动力需求的清晰衡量。SEI可能与Seek网站的工作广告不同,这是由于许多因素,包括:1)应用于SEI的季节性调整; 2)从SEI中排除重复的工作广告; 3)从SEI中排除公司上市(包括公司资料)。
SEI形成反应的动力学表达基于Ekström和Lindbergh的论文(参考文献3)。在本文中,假定SEI形成受到形成的SEI膜的扩散过程受到限制,结果衰老在膜增厚后会减慢。另外,当石墨电极颗粒在插入负电极期间膨胀时,由于SEI膜的“破裂”,老化也会加速。石墨膨胀速率既取决于电荷状态和插入电流。假定SEI形成反应是减少反应,从而导致较低电位的反应速率(即电池最新电池)。在循环和日历老化期间,使用集团零维模型的模型参数的值,用于在45 c的循环和日历老化期间的实验数据。
摘要:形成稳定的电化学相互作用,包括固体电解质间相(SEI)和阴极电解质相间(CEI)对于开发高性能碱金属电池至关重要。SEI/CEI的稳定性主要取决于其化学和结构。当前对SEI/CEI设计的研究主要集中于通过调节电解质配方来调节其化学。在这项工作中,我们展示了SEI/CEI的化学和结构都可以通过温度调制的形成策略轻松调节。具体而言,使用加热条件下的预充电来调节电解质分解反应的类型和动力学,然后在低温存储下冷冻,以控制电极界面上分解产物的沉积行为。研究表明,高温预充电会影响LI+的配位结构并加速分解反应动力学,从而导致大量阴离子分解。随后的低温存储迅速降低了在高温下产生的分解产物的溶解度,从而促进了两个电极对不溶性产物的沉积,从而导致密集且稳定的SEI/CEI。强大的SEI/CEI实现了中等浓度的基于以太电解质的4.5 V LI || NCM811单元的稳定循环,
降解 - SEI层的形成电能力不可避免地会随着时间的流逝而减小,而自由的降解能力会随着其历史条件而增加,而内部电阻会增加。一些重要因素是温度,充电状态和负载曲线。因此,随着时间的推移,观察到容量损耗和功率损失。sei形成被认为是电池的第一个充电/放电周期中的主要降解机制。可以使用Safari等人的方法对SEI形成进行建模。[3]。在这种方法中,溶剂(碳酸乙酯,EC)通过SEI层扩散,并与界面上的电极颗粒反应,从那里形成新的SEI层。在此过程中,在反应方案EQ-10之后消耗溶剂和锂(见图2)。
降低负/正比(N/P比)的比率对于增加LI金属电池的能量密度(LMB)至关重要。通常,稳定的LI沉积具有高库仑效率(CE),可以通过基于醚的电解质轻松实现,但是低氧化稳定性限制了其在具有高压阴极的电池中的应用。在此处,我们在固体电解质相(SEI)(SEI)上进行了低温电子显微镜(冷冻-ee),深入的X射线光电态(XPS)和原子力显微镜(XPS)和原子力显微镜(AFM),该层以碳酸盐和醚电解液为基于碳酸盐的电解质和电子电气的良好的碳酸电解质和良好的SEI层的特征,从电解质组成。结果表明,SEI层中的有机成分决定了LMB的CE。进一步的理论计算表明,具有LI的碳酸盐分子具有高反应性的性质,导致有机丰富的SEI层具有低弹性模量。根据这些见解,我们通过调整电解质组成来提出碳酸盐电解质中晚期SEI层的设计方法。设计的SEI表现出具有密度无机内层的多层结构。因此,组装了一个4 V的全电池,并传递了760 WH/kg的高能量密度(基于阴极和阳极的重量计算),其长周期寿命为200个碳酸盐电解质的循环寿命为200个周期。