执行摘要 根据第 120 届立法机关第一次常会第 2001 号决议第 65 章,成立了研究实施有毒或危险材料紧急释放和泄漏统一应急响应的委员会。该委员会由参议员 Anne Rand 和众议员 Robert Duplessie 共同担任主席,由 18 名成员和 1 名候补成员组成。成员团体代表包括立法机关、SERC、MEMA、消防员、市政府、私营企业和环境保护部、劳工部和缅因州警察局等州政府机构。该委员会负责研究州、县和市政府以及私营企业如何应对有毒或危险材料向环境中的意外或非法释放和泄漏。一般而言,委员会负责研究该州应对危险材料事故的能力,并建议对法律、规则、条例或程序进行任何必要的修改,以便在该州的所有地理区域建立一个牵头响应机构。由于所面临的问题的复杂性,委员会重点关注了 3 个主要问题:1) 需要提供激励措施并消除障碍,以鼓励行业团队在场外做出响应;2) 缺乏可用资源来激励应急响应团队成员参与培训机会;3) 是否需要提供全州范围内的事故指挥和培训认证模型。委员会讨论的其他领域包括危险化学品储存设施的运输报告要求、相关研究以及其他州和其他机构在危险品响应相关领域使用的模型。(请参阅附录 C,了解委员会各次会议的议程和会议摘要。)委员会提出以下建议:1.加强现有应急响应小组并鼓励成立新的应急响应小组 发现:委员会发现有必要加强现有应急响应小组并鼓励成立新的应急响应小组。建议:委员会鼓励州反恐工作组在规划和分配资源时考虑加强现有应急响应小组并在该州服务不足的地区成立新的应急响应小组。2.澄清责任豁免和工人赔偿调查结果:委员会发现,法律对地方、行业和私人紧急救援人员的责任豁免和工人赔偿范围缺乏明确规定,阻碍了他们的参与。
1.1 目标 估算涵盖向退休成员或其家属提供养老金和一次性付款、向转移到其他计划的成员转移价值以及偿还英国原子能管理局 (UKAEA) 养老金计划下的供款。管理局养老金计划是根据 1970 年《财政法》第 26(1) 条定义的法定计划,并且是根据 2004 年《财政法》注册的计划。这些计划是根据 1993 年《养老金计划法》和后续立法外包的。根据 2014 年《养老金法》的条款,这些计划自 2016 年 3 月 31 日起停止外包。管理局的公共服务养老金计划包括综合养老金计划 (CPS)、主要非工业退休金计划 (PNISS) 和受保护人员退休金计划 (PPSS)。它们与管理局的员工以及截至 2009 年 10 月 31 日的 UKAEA Ltd、Dounreay Site Restoration Limited (DSRL) 和 Research Sites Restoration Limited (RSRL) 有关。此外,这些计划还涉及英国核燃料有限公司 (BNFL) 的前雇员、国家核实验室 (NNL) 和国际核服务有限公司 (INSL) 的员工、民用核警察局 (CNPA) 和健康防护局 (HPA) 的员工,这些机构后来成为英国公共卫生部 (PHE) 的一部分(针对 2005 年 4 月 1 日之前受雇于国家放射防护委员会的成员),以及现在受雇于核退役管理局 (NDA) 的前 INSL 员工,以及工程和物理科学研究委员会 (EPSRC) 和科学与技术设施委员会 (STFC) 的部分员工、研究委员会中央实验室理事会 (CCLRC) 的前雇员、粒子物理和天文学研究委员会 (PPARC) 和科学与工程研究委员会 (SERC) 的前雇员、RCUK 共享服务中心有限公司(现为英国共享商业服务 (UKSBS) 有限公司)和调至国防部(原子武器研究所)的前管理局员工。英国原子能管理局养老金计划是一种无资金、固定福利、现收现付的职业养老金计划,由英国原子能管理局养老金计划代表符合会员资格标准的成员运营。英国原子能管理局养老金计划的资金来源基于已发布的议会供应估计,并通过英国财政部管理的综合基金提供给能源安全和净零排放部 (DESNZ)。应该注意的是,对计划的任何贡献都用于支付计划的福利,但此类贡献超过支付的任何盈余都将上交综合基金。同样,任何赤字都由议会供应部门通过综合基金支付来弥补。根据 1954 年《原子能管理局法》,该管理局是一个法人团体。
印度电力行业的清洁能源转型不仅需要开发可再生能源,还需要取代现有的化石燃料。与运输中使用的化石燃料中混合生物燃料类似,全国的政策和监管环境鼓励在燃煤电厂中使用生物质作为共燃燃料。实施这一举措不仅应依赖严格的目标,还应依赖供应链的发展,以充分满足电力行业的生物质需求。发展生物质可再生能源电厂的历史经验表明,这种新需求的产生往往会导致燃料价格大幅上涨,特别是由于缺乏足够的供应链和规模经济,因为生物质收集面积扩大以满足电厂的生物质燃料。考虑到燃煤电厂的整体容量,分阶段对燃煤电厂的生物质混合方法将允许生态系统的发展,同时也为投资者在发展供应链方面提供监管确定性。考虑到贸易/存储等因素,对生物质进行核算,以及需要确定 RPO/RGO 的核算,这些是确保两方面都具有透明度的关键。我们还强调需要修改生物质利用辅助消耗的计算方法。《2003 年能源法》第 62 条授权相关委员会发布关税确定条例,并设定多年绩效目标,包括网络损失目标。各州政府“批准”目标轨迹可能会导致程序延误,也会影响委员会的作用。此外,在“批准”损失减少和作为国有配电公司的所有者时,很难确保利益分离。各州的 MYT 条例规定了收益和损失的分享,对收益分享采取了差异化的方法,收益可以平等分享,但损失分担可以保护消费者的利益。鉴于 SERC 已经发布了 MYT 法规,中途改变方法可能会导致法律后果。CER 的一项研究为包括电力部门在内的所有基础设施子部门的 RoE 估算提供了见解。除此之外,提供 RoE 的方法还需要考虑在项目整个生命周期内估算权益的方法。各州的净计量安排通常规定将非义务实体在州内生产和消费的可再生能源分配给配电公司的 RPO。该框架通常倾向于配电公司,并降低了对可再生能源的投资激励。此外,允许配电公司索取所有 CDM 收益的提议不会激励可再生能源项目投入资源来完成 CDM 流程。
系统工程协作者信息交换 (SoSECIE) 2014 年 11 月 4 日星期二上午 11:00 至中午东部时间 系统系统元架构的模糊评估方法 Louis Pape 先生,波音公司 摘要 提出了一种评估一系列系统系统 (SoS) 元架构替代方案的方法。SoS 是通过组合现有的、功能齐全的系统而创建的,可能进行较小的功能更改,但通常通过以新的方式使用系统协作(接口),以实现系统本身无法提供的新功能。二进制元架构涵盖了如何组合所有可能的系统子集及其相互接口来创建 SoS。无论如何确定,所提议架构的质量通常简化为语言术语,例如不可接受、边际或优秀。这些术语通常映射到性能、成本或其他属性的共识间隔,例如生命周期内的“易用性”、“任务有效性”或“可负担性”。这种方法非常适合模糊逻辑方法,用于将多个属性领域的评估组合成整体 SoS 评估。如果可以评估架构,则可以将其用作遗传算法中的适应度函数,以找到 SoS 的最佳或至少非常好的架构。该方法展示了如何识别模糊概念并建立规则集以对任何集合进行整体 SoS 评估
在其可靠性协调员区域内的权威或传输操作员将有并根据要求提供,这些证据可能包括但不限于操作员日志,语音记录或语音记录或转录本的录音,电子通信,电子通信或等效证据,这些证据将用于确定可靠性的可靠性和其他均衡性R5的可靠性,以及其可靠性R5,以及其可靠性的可靠性,以可靠性的可靠性(可靠性),以可靠性的可靠性(协调员。在其可靠性协调员区域内的权威或传输操作员将有并根据要求提供,这些证据可能包括但不限于操作员日志,语音记录或语音记录或转录本的录音,电子通信,电子通信或等效证据,这些证据将用于确定可靠性的可靠性和其他均衡性R5的可靠性,以及其可靠性R5,以及其可靠性的可靠性,以可靠性的可靠性(可靠性),以可靠性的可靠性(协调员。
ERO Enterprise CMEP实践指南:2类生成器所有者和基于基于逆变器的资源版本1:2025年1月31日的注册标准的应用,以支持成功实施并遵守北美电力可靠性公司(NERC)可靠性标准,电力可靠性组织(ERO)Enterprise 1 Enperterprise 1 Compliance colugnions Prolient promissience colugion compluce promisity progience。 2合规指南政策概述了实施可靠性标准的目的,开发,使用和维护。 根据合规指南政策,合规指南包括两种类型的指导 - 实施指南和合规性监控和执法计划(CMEP)实践指南。 3目的作为基于逆变器的资源(IBR)策略的一部分,NERC致力于确定并解决与基于逆变器的资源相关的挑战,因为这些资源的渗透率不断增加。 ERO分析确定了与IBR在网格上增加集成与相关的大量电力系统(BPS)连接的IBR所有者和运营商目前未满足NERC所需的标准阈值相关的可靠性差距,因此,不需要遵守NERC可靠性标准。 作为回应,联邦能源监管委员会(FERC)发出了一项命令,指示NERC识别和注册未注册的BPS连接的IBR的所有者和运营商,该ibrs总共对BPS的可靠性产生了重大影响。 7ERO Enterprise CMEP实践指南:2类生成器所有者和基于基于逆变器的资源版本1:2025年1月31日的注册标准的应用,以支持成功实施并遵守北美电力可靠性公司(NERC)可靠性标准,电力可靠性组织(ERO)Enterprise 1 Enperterprise 1 Compliance colugnions Prolient promissience colugion compluce promisity progience。2合规指南政策概述了实施可靠性标准的目的,开发,使用和维护。根据合规指南政策,合规指南包括两种类型的指导 - 实施指南和合规性监控和执法计划(CMEP)实践指南。3目的作为基于逆变器的资源(IBR)策略的一部分,NERC致力于确定并解决与基于逆变器的资源相关的挑战,因为这些资源的渗透率不断增加。ERO分析确定了与IBR在网格上增加集成与相关的大量电力系统(BPS)连接的IBR所有者和运营商目前未满足NERC所需的标准阈值相关的可靠性差距,因此,不需要遵守NERC可靠性标准。作为回应,联邦能源监管委员会(FERC)发出了一项命令,指示NERC识别和注册未注册的BPS连接的IBR的所有者和运营商,该ibrs总共对BPS的可靠性产生了重大影响。74与行业和利益相关者紧密合作,NERC正在执行FERC批准的工作计划,以在2026年之前实现标识和注册指令。NERC程序规则(ROP),附录5B,合规性注册表标准5中包含的NERC注册表标准5于2024年6月27日修订和批准。6修订创建了对生成器所有者(GO)和生成器运算符(GOP)功能标准的更改,非BES IBR的所有者和运营商必须向NERC注册为GO类别2和GOP类别2。
8。网络安全数据挖掘2015年麦吉尔大学蒙特利尔,Qu nserc 2 9。数字绩效2015 York University Toronto,on Eng SSHRC 2 10。大规模机器学习2015年不列颠哥伦比亚大学温哥华大学,不列颠哥伦比亚省ENG NSERC 2 11。高级机器人技术与控制2017年伦敦西安大略大学,Eng nserc 1 12。生物信息学2017滑铁卢大学,Eng nserc 1 13。生物医学数据分析2017年魁北克大学Gatineau,Qu nserc 2 14。计算学习理论2017 Regina Regina University,SA Eng Nserc 1 15。计算愿景2017 York University Toronto,on Eng nserc 1 16。计算机愿景2017 York University Toronto,on Eng Cihr 2 17。决定神经科学2017多伦多大学多伦多大学,Eng nserc 2 18。模糊混合决策支持系统的建筑2017艾伯塔大学埃德蒙顿大学,AB ENG NSERC 1 19。生成模型2017多伦多大学多伦多大学,on Eng nserc 2 20。机器学习2017 Carleton University Ottawa,on Eng nserc 2 21。视觉的神经元电路2017麦吉尔大学蒙特利尔,QU ENG CIHR 2 22。航空航天机器人2018年蒙特利尔大学蒙特利尔大学,Qu nserc 2 23。人工智能和医学成像2018滑铁卢大学,Eng nserc 2 24。自主太空机器人技术和机电一体化2018 Carleton University Ottawa,on Eng Nserc 2 25。计算机视觉和机器学习2018不列颠哥伦比亚大学温哥华大学,不列颠哥伦比亚省ENG NSERC 2 26。机器人技术与控制机器学习2018多伦多大学多伦多大学,on Eng nserc 2 27。机器学习2018 Guelph Guelph University,on Eng Nserc 2 28。Micro and Nano Engineering Systems 2018多伦多大学多伦多大学,ENG NSERC 1 29。智能生物医学微型系统2018 Qu fr nserc 2 30。人工智能(AI)支持下一代无线网络2019渥太华渥太华大学,Eng nserc 2 31。生物医学计算和信息学2019皇后大学金斯敦,Eng Cihr 2 32。生物信号互动和人格技术2019麦吉尔大学蒙特利尔,QU ENG CIHR 2 33。合作机器人学2019多伦多大学多伦多大学,on Eng Nserc 2 34。计算生物学与生物物理学2019皇后大学金斯敦,Eng Cihr 1 35。计算神经科学2019年多伦多大学,on Eng Nserc 2 36。计算药物基因组学2019多伦多大学多伦多大学,on Eng CIHR 2 37。计算精神病学2019年艾伯塔大学埃德蒙顿大学,AB Eng CIHR 2 38。机器人技术和人工智能的道德工程2019渥太华大学渥太华大学,Eng sshrc 239。智能纳米镜头可塑性2019UniversitélavalQuébecCity,Qu nserc 2 40。智能软件可靠性和合规性2019渥太华大学渥太华大学,Eng nserc 1 41。平行和分布式计算2019多伦多大学多伦多大学,Eng Nserc 2 42。天体物理数据分析和机器学习2020年蒙特利尔大学蒙特利尔大学,Qu fr nserc 2 43。健康科学中的因果推理和机器学习2020蒙特利尔大学蒙特利尔大学转化生物医学的机器学习2020多伦多多伦多大学,on Eng CIHR 2 45。神经退行性疾病研究中的多模式数据整合2020年麦吉尔大学蒙特利尔,QU ENG CIHR 246。人口健康信息学2020麦吉尔大学蒙特利尔,QU ENG CIHR 1 47。精密医学数据分析2020蒙特利尔大学,QU FR CIHR 1 48。化学和数学界面的人工智能2021渥太华大学渥太华大学,on Eng Nserc 249。卫生人工智能2021 Dalhousie University Halifax,NS Eng Nserc 2 50。人工智能法和数据治理2021麦吉尔大学蒙特利尔,QU ENG SSHRC 2 51。数据,民主和人工智能2021 York University Toronto,on Eng sshrc 2 52。交互式人类系统设计2021不列颠哥伦比亚大学温哥华大学,不列颠哥伦比亚省ENG NSERC 1 53。医学人工智能2021渥太华大学渥太华大学,on Eng Cihr 1 54。自然语言处理和机器学习2021不列颠哥伦比亚大学温哥华大学,不列颠哥伦比亚省ENG SSHRC 2 55。神经计算和接口2021蒙特利尔大学,QU ENG CIHR 2 56。值得信赖的人工智能2021安大略大学学院