指导学生 1. Rahul Kumar 先生(SRF):在读(指导老师) 2. Manoj Kumar 先生(SRF):在读(指导老师) 3. Sanju Kumari 女士(SRF):在读(指导老师) 4. Yogesh Singh 先生(SRF):在读(指导老师) 5. Raman Kumari 女士(SRF):在读(指导老师) 6. Mamta 女士(SRF):在读(联合指导老师)(指导老师-KK Maurya 博士) 7. Varun Kumar 先生(在诺伊达 Amity 注册),(联合指导老师),指导老师;Surbhi 博士 DAC 成员近 25 名学生
背景:胃癌是全球最常见的恶性肿瘤之一,发病率和死亡率都很高。三部分基序含28(TRIM28)是影响肿瘤发生和发展的重要分子,但其在GC中的作用尚不清楚。本研究旨在探索TRIM28影响GC的分子机制。方法:在TCGA数据库的RNA-seq数据、患者肿瘤组织样本和GC细胞系中检测TRIM28的表达。通过siRNA、慢病毒介导的shRNA或质粒沉默或过表达基因。进行细胞计数试剂盒8(CCK-8)和菌落形成试验以探讨TRIM28敲低后GC细胞的增殖情况。使用RNA-seq和TCGA数据库来识别靶基因。采用荧光素酶报告基因检测来检测TRIM28与吲哚胺2,3-双加氧酶(IDO1)之间的可能机制。使用荧光测定试剂盒测定细胞上清液中色氨酸浓度。将MGC-803和746T细胞注射到小鼠体内建立异种移植动物模型。结果:TRIM28的表达与肿瘤大小和较差的预后呈正相关。在GC组织和细胞中观察到TRIM28的上调。体外实验证明敲低TRIM28可显著抑制GC细胞的增殖。然后发现TRIM28与GC细胞中IDO1的表达呈正相关。与此相符,在TRIM28敲低的GC细胞中细胞上清液中色氨酸水平升高,而过表达IDO1可以逆转这种表型。血清反应因子(SRF)是已知的IDO1的调节因子,在GC细胞中也受TRIM28的调控。在GC细胞中,TRIM28敲低引起的IDO1表达降低可以通过过表达血清反应因子(SRF)部分逆转。功能研究表明,GC中IDO1表达增加,敲低IDO1也可以抑制GC细胞的增殖。此外,过表达IDO1可以部分逆转TRIM28敲低引起的GC细胞增殖抑制。在体内实验中,敲低TRIM28显著抑制肿瘤生长,过表达IDO1和SRF均可逆转TRIM28敲低引起的增殖抑制。结论:TRIM28在GC的发生发展中起关键作用,可能通过SRF调控IDO1,TRIM28通过SRF/IDO1轴促进GC细胞增殖。
缓慢释放的肥料(SRF)在农业工业中的肥料应用中起着重要作用。它们是专门设计的,可以优化养分的释放,并在长时间内增强营养递送到农作物。通过有效管理养分释放,SRF提高了肥料的性能和效率,最终防止营养损失和减少废物。此外,缓慢释放的机制允许植物更有效地利用营养。SRF:基于基质和涂层肥料。在生产涂层肥料中使用了各种技术,例如流化的床涂层,锅涂层,旋转鼓,融化挤出,逆悬浮聚合,溶液聚合/交联和微波辐射。流化的床方法是生产涂层肥料的最重要技术之一。全球对可持续农业实践的需求已大大提高了SRF的生产和采用。凭借其庞大的石油和天然气储量以及伊朗富含硫磺的通道,拥有产生含硫涂层的SRF的独特位置。由于硫磺的可用性和低成本,与其他国家相比,伊朗在经济生产含硫的肥料方面具有重要优势。这项研究对全球SRF和新兴生产趋势的生产过程,优势和局限性提供了全面的见解。
niobium超导射频(SRF)用于高能加速器应用的腔体已通过诸如氮掺杂等技术的质量因子Q大大改善。但是,Q的指导改进仍未完全理解。最近,Fermilab的SRF组在过渡温度附近的N掺杂SRF Niobium腔的频移中测量了异常。在这里,我们根据超导性的显微镜理论报告了我们对这些结果的理论分析,该理论结合了SRF空腔筛选区域中超导间隙和不均匀疾病的各向异性。我们能够计算频率移动异常非常接近KHz分数的t c。我们的频移和Q的结果与Bafia等人报告的所有四个N-Doped NB SRF腔报告的实验数据非常吻合。我们还将我们的理论与以60 GHz测量的NB样本进行的早期报告进行了比较。此外,我们还表明,理论上计算的质量因子具有上凸的峰值,在中等水平的疾病中,最大的Q具有最大的Q。强障碍,即肮脏的极限,在存在障碍的情况下对破裂和筛选电流限制了Q。
•用高功率电子光束生产放射性同位素•诊断和治疗同位素•Niowave同位素计划•商业SRF ACCELERATOR技术•SRF腔和冷冻模块•液体氦冰箱•微波化•微波化•微波化功率•高电动型电源型型型iSOP线•ISOP LINS型•ISOP范围•ISOP型•ISOP型设计•
自割液(SRF),例如长链酒精溶液,是一种特殊的具有表面张力的液体,其异常依赖于温度,导致热乳头流与正常流体(NFS)的热毛细血流显着差异。最近对SRF的兴趣主要是由于它们在各种微重力应用和微流体中增强流体动力学和热传输中的作用,而其许多基本过程仍未开发。这项研究的重点是模拟和研究在不均匀加热条件下与自吐液层相互作用的SRF滴的行为。在这方面,我们采用具有相位模型的强大基于中央力矩的晶格Boltzmann方法(LBM),该模型结合了三个分布功能:一种用于两流体运动的分布函数:高密度的高密度raTIOS,包括界面的Marangoni压力,用于基于保守的Allen-cahn等分的三分之二的界面,用于捕获的界面,并捕获三分之二有效效果。我们介绍了SRF中的合并和捏合过程,并将其与NFS中的合并过程进行比较。我们的模拟表明SRF比NFS早于捏。在SRF中,流体向界面围绕界面的较热区域移动,这与NFS中的流动相反。我们还观察到,增加ohnesorge数量OH抑制了捏合过程,突出了粘性力相对于表面张力的作用,该作用是由重力效应或键数BO调节的。此外,我们探讨了如何分别在温度,m 1和m 2上分别改变表面张力的无量纲线性和二次灵敏度系数,以及无量纲的无量化热通量q影响着结合/捏合行为。有趣的是,与未加热的情况相比,在SRF中增加了M 2或Q,减少了捏合和扩大所需的时间。相比之下,在NFS中,增加M 1或Q会在捏合之前延长停留时间,并扩大了发生合并的OH-BO图中的区域。这些差异被证明是由于界面上热毛细力的变化所致。总体而言,我们发现在不均匀的加热下,SRF会增强捏合过程,从而在更广泛的条件范围内与NFS相比,捏合时间较短。
脂肽具有化学农药的有希望的替代品,用于植物生物防治目的。我们的研究通过检查它们与脂质膜的相互作用,探讨了脂肽表面蛋白(SRF)和富霉素(FGC)的独特植物生物防治活性。我们的研究表明,FGC具有直接的拮抗活性,对辣椒粉,并且在拟南芥中没有明显的免疫吸收活性,而SRF仅表现出刺激植物免疫力的能力。它还揭示了SRF和FGC对膜完整性和脂质堆积的影响。SRF主要影响膜的物理状态,而没有明显的膜通透性,而FGC透化膜而不会显着影响脂质堆积。从我们的结果中,我们可以提出脂肽的直接拮抗活性与它们透化脂质膜的能力有关,而刺激植物免疫的能力更可能是它们改变膜的机械性能的能力。我们的工作还探讨了膜脂质成分如何调节SRF和FGC的活动。固醇对两种脂肽的活性产生负面影响,而鞘脂会减轻对膜脂质填料的影响,但会增强膜泄漏。总而言之,我们的发现强调了考虑膜脂质填料和泄漏机制在预测脂肽的生物学作用中的重要性。它还阐明了膜组成与脂肽的有效性之间的复杂相互作用,从而提供了靶向生物控制剂设计的见解。