物质中集体秩序的出现是物理学中最基本和有趣的素质之一。最近,已经引起了动态多效性的理论概念,以描述由于非铁磁材料中时间依赖性电化而引起的磁化的出现。在这里,由于这种机制,我们提供了原型perobelectric perovskite srtio 3中室温杂志的实验证据。我们以强烈的圆形极化的Terahertz电场来共鸣,并驱动红外的软声子模式,并检测到时间分辨的磁光kerr效应。我们的发现显示了控制磁性的新路径,例如,对于超快磁开关,通过一致控制晶格振动。
图4。(𝑇)7 nm厚的ND 0.825 SR 0.175 NIO 2膜中的四个数据存放在SRTIO 3单晶体和全局数据拟合等式上。2(Fowlie等人[36]在其图S1中报告的原始数据,A [75])at𝑝= 5.0(𝑓𝑖𝑥𝑒𝑑)。绿球表示拟合𝜌(𝑇)数据的边界。青色表明𝑇𝑇,𝑧𝑒𝑟𝑜。推导的Debye温度为:𝑇= 313±1𝐾。适用于所有拟合𝜌→∞(等式2)。拟合的好处:(a)0.9992; (b)0.9995; (c)0.9981; (d)0.9997。95%置信带(粉红色阴影区域)的厚度比拟合线的宽度窄。
电阻开关器件由于其出色的性能、简单性和可扩展性而成为下一代非易失性存储器的有希望的候选者。其中,开发多级电阻开关因其在显著提高信息存储密度且不消耗额外能量的潜力而引起了广泛关注。尽管在许多金属氧化物和有机材料中已经观察到连续多级电阻开关 (CMRS),但实际应用仍然迫切需要实现高速和可靠的随机存取多级非易失性存储器 (RAMNM)。在这里,我们成功地制造了一种基于高性能脉冲宽度调制忆阻铁电隧道结 (FTJ) 的 RAMNM,其 Pt/La 0.1 Bi 0.9 FeO 3 /Nb:SrTiO 3 在室温下具有超过 4 × 10 5 的巨大开关比。
精选出版物 添加 CoTiO 3 改善 Mg-Na-Al 体系的再氢/脱氢性能 镁与合金杂志 12 (2024) 1215 剥离致密层状 Ti 2 VAlC 2 MAX 以打开层状 Ti 2 VC 2 MXene 以增强 MgH 2 的储氢性能 化学工程杂志 468 (2023) 143688 K 2 SiF 6 对 MgH 2 储氢性能的影响 镁与合金杂志 8 (2020) 832 SrTiO 3 对 MgH 2 储氢行为的催化作用 能源化学杂志 28 (2019) 46 添加 LaCl 3 对 MgH 2 储氢性能的影响 能源 79 (2015) 177 奖项/成就 返回顶部根据斯坦福大学研究的 Scopus 引用排名,能源领域科学家数量位居全球 2%
外延生长时,氧化膜必须生长在晶体衬底上。这些要求极大地限制了它们的适用性,使得我们无法制备多种人工多层结构来研究薄膜及其界面处出现的突发现象[2],也无法制造柔性器件并单片集成到硅中。[3–5] 人们致力于开发将功能氧化膜与生长衬底分离的程序,以便能够自由操作它。这些方法包括机械剥离[6]、干法蚀刻[7,8]和湿化学蚀刻[9,10]。在化学蚀刻程序中,使用牺牲层(位于衬底和功能氧化物之间)似乎是一种快速且相对低成本的工艺。为了使这种方法成功,牺牲层应将外延从衬底转移到所需的氧化物,经受功能氧化物的沉积过程,并通过化学处理选择性地去除,从而可以恢复原始的单晶衬底。 (La,Sr)MnO 3 已被证明可以通过酸性混合物进行选择性蚀刻,从而转移单个外延 Pb(Zr,Ti)O 3 层 [11] 和更复杂的结构,例如 SrRuO 3 /Pb(Zr,Ti)O 3 /SrRuO 3 。 [12] 最近,水溶性 Sr3Al2O6(SAO)牺牲层的使用扩大了独立外延钙钛矿氧化物层(SrTiO3、BiFeO3、BaTiO3)[13–15] 和多层(SrTiO3/(La,Sr)MnO3)[16] 的家族,这些层可进行操控,从而开辟了一个全新的机遇世界。[5,10,17] 制备此类结构的沉积技术也是需要考虑的关键因素,不仅影响薄膜质量,还影响工艺可扩展性。虽然分子束外延和脉冲激光沉积等高真空沉积技术是生产高质量薄膜的成熟技术[1,18–20],但溶液处理和原子层沉积等可实现低成本生产的替代工艺正引起人们的兴趣。[21,22]
摘要。在FESE/SRTIO 3中发现了高温超导性,这引发了人们对具有工程界面的新超导系统的重大兴趣。在这里,使用分子束外延生长,我们成功地制造了FESE/PBO X异质结构,并在三个不同的单层FESE相关界面中发现超导性。我们观察到在PBO X的两个不同阶段生长的单层FESE膜中的13〜14 MEV的超导间隙。此外,我们发现了一个新的绝缘Fe 10 SE 9相,具有有序的√5×√5Se-vacancy结构。我们的第一原理计算表明,这个新的绝缘阶段起源于电子相关性。有趣的是,在绝缘Fe 10 SE 9上生长的另外一部单层FESE膜也具有超导性,间隙尺寸为5 meV。我们的结果表明,单层FESE与底物之间的功能差异,可以诱导带弯曲和电荷转移,对于界面超导性至关重要。
最近的理论研究表明,过渡金属钙钛矿氧化物膜可以在红外范围内启用表面声子极化子,而低损失和比散装crys-thals的次波长更强。到目前为止,尚未在实验上观察到这种模式。Here, using a combination of far- fi eld Fourier-transform infrared (FTIR) spec- troscopy and near- fi eld synchrotron infrared nanospectroscopy (SINS) ima- ging, we study the phonon polaritons in a 100 nm thick freestanding crystalline membrane of SrTiO 3 transferred on metallic and dielectric sub- strates.我们观察到一种对称 - 抗对称模式的分裂,从而产生了Epsilon-near-Zero和Berreman模式,以及高度构型(以10倍)传播声子偏振子,这两者都是由膜的深度亚波厚度造成的。基于分析有限二极管模型和数值差异方法的理论建模充分证实了实验结果。我们的工作揭示了氧化物膜作为红外光子学和偏光元素的有前途的平台的潜力。
我们对量子材料的理解通常是基于通过光谱均值(最著名的是角度分辨光发射光谱(ARPE)和扫描隧道显微镜的精确确定其电子光谱的。都需要原子清洁和平坦的晶体表面,这些表面是通过在超高真空室中进行原位机械裂解来制备的。我们提出了一种新的方法,该方法解决了当前最新方法的三个主要问题:(1)切割是一种高度的稳定性,因此是一种效率低下的过程; (2)断裂过程受散装晶体中的键支配,许多材料和表面根本不会切割; (3)裂解的位置是随机的,可以防止在指定的感兴趣区域收集数据。我们的新工作流程是基于微型晶体的聚焦离子光束加工,其中形状(而不是晶体)各向异性决定了裂解平面,可以将其放置在特定的目标层上。作为原则证明,我们显示了ARPES沿AC平面的SR 2 RUO 4的微裂解和SRTIO 3的两个表面取向产生,这是众所周知的很难裂解立方钙钛矿。
二维电子气 (2DEG) 可在某些氧化物界面处形成,为创造非凡的物理特性提供了肥沃的土壤。这些特性可用于各种新型电子设备,例如晶体管、气体传感器和自旋电子器件。最近有几项研究展示了 2DEG 在电阻式随机存取存储器 (RRAM) 中的应用。我们简要回顾了氧化物 2DEG 的基础知识,强调了可扩展性和成熟度,并描述了从外延氧化物界面(例如 LaAlO 3 /SrTiO 3 )到简单且高度可扩展的非晶态-多晶系统(例如 Al 2 O 3 /TiO 2 )的最新发展趋势。我们批判性地描述和比较了基于这些系统的最新 RRAM 设备,并强调了 2DEG 系统在 RRAM 应用中的可能优势和潜力。我们认为当前的挑战是围绕从一个设备扩展到大型阵列,其中需要在串联电阻降低和制造技术方面取得进一步进展。最后,我们列出了基于 2DEG 的 RRAM 所带来的一些机遇,包括增强的可调性和设计灵活性,这反过来可以为多级功能提供优势。
基于钛酸盐的陶瓷由于其低成本以及高热和化学稳定性而有希望的N型热电学。在这里,用电化学生产的氧化石墨烯(EGO)和市售的碳黑色(CB)的碳添加碳添加了SRTI 0.85 Nb 0.15 O 3。陶瓷样品在还原的气氛下在1700 K处烧结。XRD,HR-TEM和Raman Spectra证实基质相为立方perov-Skite。没有碳残留。通过掺入氧化石墨烯,由于载流子迁移率增强,电导率在300 K时在300 K下增加了9倍至2818 s cm-1。相比之下,碳黑色样品表现出低密度和较小的平均晶粒尺寸约为1μm。高分辨率的X射线光电子光谱显示出碳黑色样品中存在大量电离杂质,从而显着增强了散射效应。在873 K处实现了1.7 W m -1 K -1的低热电导率。该工作表明,自我促进了SRTIO 3中的电荷运输,而CB则显着抑制了声子的传输。这两种影响与其他热电学的发展有关。