用于高容量正极材料的先进纳米涂层的研究和开发是目前固态电池(SSB)领域的热门话题。保护性表面涂层可防止正极材料与固体电解质直接接触,从而抑制有害的界面分解反应。这在使用硫代磷酸锂超离子固体电解质时尤为重要,因为这些材料的电化学稳定窗口较窄,因此在电池运行过程中容易降解。本文我们表明,LiNbO 3 涂覆的富镍 LiNi x Co y Mn z O 2 正极材料的循环性能在很大程度上取决于样品历史和(涂层)合成条件。我们证明,在 350°C 的纯氧气氛中进行后处理会形成具有独特微观结构的表面层,该表面层由分布在碳酸盐基质中的 LiNbO 3 纳米颗粒组成。如果在分别以 Li 4 Ti 5 O 12 和 Li 6 PS 5 Cl 作为阳极材料和固体电解质的颗粒堆叠 SSB 全电池中以 45 °C 和 C/5 速率进行测试,则在 200 次循环后仍可保留初始比放电容量的约 80%(~ 160 mAh·g −1 ,~ 1.7 mAh·cm −2 )。我们的研究结果强调了根据电极材料定制涂层化学对于实际 SSB 应用的重要性。
根据2021年国际糖尿病联合会(IDF)的估计,全球有5.37亿个糖尿病患者。当前审查的目的是探索垃圾食品消费与2型糖尿病之间的关系。垃圾食品被定义为容易获得,通常便宜,并且营养价值低。这些食物的铁,钙和饮食纤维含量较低,卡路里,盐和饱和脂肪的含量更高。不健康的饮食是负责多种健康状况的重要生活方式因素之一。垃圾食品包括油炸,加工或超级加工食品(UPFS)以及含糖和饮料(例如糖甜饮料(SSB)(SSB))的高糖与较高的体重指数(BMI),脂肪度),脂肪度和增加的胰岛素耐药性(IR)直接相关。有关相关数据库IDF ATLAS报告,PubMed,Springer,Elsevier,Web of Science和BMJ的搜索,以截至2023年3月出版了原始和荟萃分析研究。近几十年来,这些食品的消费量已大大增加。2型糖尿病的主要危险因素是肥胖,食用垃圾食品与肥胖密切相关。垃圾食品后果包括增加2型糖尿病病例,尤其是与男性相比,在青年和成年女性中。肥胖或高BMI表示由于垃圾食品摄入而产生的正能量平衡。因此,垃圾食品的复发消费增加了患有2型糖尿病的可能性。
•锂离子电池(LIB)在各种电子和车辆中的日益增长的使用引起了人们对关键组件(如钴和锂等关键组件的供应和回收)的关注。lib回收具有经济和环境利益,包括恢复有价值的金属以及预防将有毒物质释放到环境中。然而,电池回收导致气体排放和液体废物,其中含有有害和持续的化学物质,包括量化和多氟烷基物质(PFA)。LIB回收过程中PFA的命运非常有限,并且不太了解。•LIBS多个成分 - 电解质,锂盐,粘合剂和分离剂 - 涉及各种氟化化合物。氟化添加剂用于提高电化学性能并增强化学和热稳定性。•少于5%的用户被回收。大多数用过的液井都是垃圾填埋的,由于灰尘,沼气,渗滤液的释放而对空气,土壤,水,水,水。•下一代LIB,固态电池(SSB),由于其出色的安全性和更好的能量密度,因此对未来电池技术具有巨大的潜力。SSB还包括粘合剂和氟化聚合物固体电解质中的各种氟化化学物质。•我们的研究概述了无机和有机氟化的化合物,添加剂和(CO)LIBS和SSB中使用的(CO)聚合物,并专注于电池粘合剂的热处理,尤其是PVDF(聚乙烯二烯氟化物)。
可充电固态电池(SSB)已作为基于降低的火灾危险和实现高级电池化学物质(例如碱金属阳极)的潜力而成为下一代储能装置。然而,陶瓷固体电解质(SES)通常在缓解机械应力方面具有有限的能力,并且对以身体为中心的立方体碱金属或其合金在化学上不稳定,或其具有较小溶质元件(β-相)的合金。肿胀 - 然后对β期的重新培训通常会引起不稳定性,例如SE断裂和腐蚀以及电子/离子接触的丧失,这会导致高电荷转移耐药性,短路等。这些挑战要求其他类别的材料和新型纳米复合体系结构的合作,以缓解压力和维护基本接触,同时最大程度地减少有害的破坏。在这篇综述中,我们总结了解决这些问题的最新进展,包括将其他类别的材料(MIEC)多孔中间层和离子电子绝缘子(IEI)粘合剂(例如SE和金属(例如β-相和当前的收集器)除外)是传统SSB组成的,除了SE和金属(例如β-相和当前的收集器)之外,还包括传统的SSB组合。特别是我们专注于提供理论解释,以了解开放式纳米孔MIEC中间层如何操纵β相沉积和剥离行为,从而抑制这种不稳定性,从而指代基本的热力学和动力学来控制β-相的成核和生长。审查结束时,通过描述SSB的多孔MIEC Interlayers未来设计的途径。
基于聚合物的SES具有足够高的离子电导率和出色的热稳定性,高环境稳定性,出色的柔韧性和可扩展的处理,其成本低。[19]基于聚乙烯(PEO)的聚乙烯。但是,它们有一些缺点:室温下的离子电导率低和氧化分解电位(低于4 V)。[20,21,22]在各种聚合物中,基于PEO的电解质是对SSB的最广泛研究的,其优势具有良好的电化学稳定性,具有LI阳极,处理性和兼容性。CE-RAMIC的固态电解质(SES)可以提供改善的电导率和电化学窗户。[23]目前,最常见的SES类是聚合物和陶瓷,例如氧化物(例如LLZO),磷酸盐(E.gnasicon),硫化物(例如Li 10 Gep 2 S 12,Li 6 Ps 5 X)和卤化物(例如Li 3含6,li 3 incl 6,li 3 ybr 6)。[2,18]在复合固体电解质(CSE)或杂交电解质的开发中,将少量(高达40 wt%)的无机活性填充剂(Perovskite,Garnet,Lisicon,Lisicon等)掺入已经广泛报道。[22,23]无机活性填充物可以在CSE的大部分区域形成连续的离子通道,并促进快速离子运输以提供更高的离子电导率,而不会构成基质的灵活性。[24]仍然有足够的空间来发展更好的CSE,以达到更高的离子连接性,而不会降低其机械性能。[25]
摘要:线粒体DNA(mtDNA)特别容易受到体细胞诱变的影响。潜在机制包括DNA聚合酶γ(POLG)误差和诱变剂(例如活性氧)的作用。在这里,我们研究了瞬时过氧化氢(H 2 O 2脉冲)对培养的HEK 293细胞MtDNA完整性的影响,并应用了Southern印迹,超深的短读和长阅读测序。在野生型细胞中,在H 2 O 2脉冲后30分钟,出现线性mtDNA片段,代表双链断裂(DSB),其末端的特征是短GC拉伸。完整的超涂层mtDNA物种在治疗后2-6小时内重新出现,并在24小时后几乎完全回收。与未经处理的细胞相比,H 2 O 2处理的细胞中BRDU掺入较低,这表明快速恢复与mtDNA复制无关,而是由单链断裂(SSB)快速修复和DSB生成的线性片段的降解所驱动的。遗传失活在外丝酶中降解的遗传降解有效POLG P.D274A突变细胞导致线性mtDNA片段的持续性,对SSB的修复无影响。总而言之,我们的数据突出了SSB修复和DSB降解的快速过程与氧化损伤后MTDNA的重新合成较慢之间的相互作用,这对MTDNA质量控制具有重要意义,对MTDNA质量控制和潜在的体细胞mTDNA删除。
摘要:固态电池(SSB)是现任锂离子技术的有前途的替代品;但是,他们面临一系列独特的挑战,必须克服这些挑战,以使其广泛采用。这些挑战包括高电阻,动力学缓慢的固体 - 固体界面,以及形成界面空隙的趋势,导致由于断裂和分层而导致的循环寿命降低。这项建模研究通过将化学和机械材料特性与其电化学响应联系起来,探测了固体电解质(SE)固体 - 固体界面上应力的演变,可以用作优化基于硅(SI)SSB的设计和制造的指南。研究了由无定形SI负电极(NE)组成的薄膜固态电池,该电池由SI的静脉诱导的膨胀引起的SE施加压缩应力。通过使用2D化学 - 机械模型,使用连续尺度模拟来探测施加的压力和C率对细胞应力 - 应变响应的影响及其对整体细胞容量的影响。由于LI通过Si的缓慢扩散而导致局部菌株,因此在Si电极内产生了复杂的浓度梯度。为了减少100%SOC的界面应力和应变,需要在中等的C速率下运行低施加压力。另外,可以对SE的机械性能进行量身定制以优化细胞性能。但是,如果SE应力的减少更加关注,则应针对具有中等屈服强度(1-3 GPA)的符合年轻的模量(约29 GPA)。为了减少SI应激,应选择具有与磷氧硝酸锂(〜77 GPa)相似的中等年轻模量的SE,应选择与硫化物相当的低屈服强度(〜〜0.67 GPA)。这项研究强调了对SE材料选择的需求和其他细胞成分的考虑,以优化薄膜固态电池的性能。关键字:固态电池,薄膜,实心电解质,材料选择,有限元分析模型,弹性,塑料,硅负电极
缩写 解释 AEL 碱性水电解器 AVGAS 航空汽油(航空级燃料) BE 电池电动 BEIS 商业、能源和工业战略部 BESS 电池储能系统 BEV 电池电动汽车 CCGT 联合循环燃气轮机 CCUS 碳捕获利用与储存 CCS 碳捕获与储存 COMAH 重大事故危害控制 CO 2 二氧化碳 CO 2e 二氧化碳当量 DNV 挪威船级社。开展此项研究的咨询公司 EFR 增强频率响应 ESG 环境、社会和治理 ETO DNV 的能源转型展望 EV 电动汽车 FC 燃料电池 FCEV 燃料电池电动汽车 GHG 温室气体 Gp km 千兆客公里 Gt km 千兆吨公里 H 2 氢气 HFO 重质燃料油 HICE 氢燃料内燃机 ICE 内燃机 IEA 国际能源署 LCO 钴酸锂 LFP 磷酸铁锂 LOHC 液态有机氢载体 LPG 液化石油气 Li-ion 锂离子电池 Li-S 锂硫电池 MGO 船用燃气油 MtCO2e 百万吨二氧化碳当量 NCA 锂镍钴氧化铝 NMC 锂镍锰钴氧化物 OCGT 开式循环燃气轮机 PEM 聚合物电解质膜电解器PHEV 插电式混合动力汽车 Pkm 铁路客运公里数(一名铁路旅客乘坐铁路行驶一公里的距离) PM 颗粒物 RPM 每分钟转数 RTE 往返效率 SAF 合成航空燃料 SIB 钠离子电池 SMR 蒸汽甲烷重整 SOEC 固体氧化物电解器 SOH 健康状态 SSB 固态电池 SUV 运动型多用途车 Tkm 吨公里数(一吨货物运输一公里的距离) TRL 技术就绪水平 VTOL(eVTOL) 垂直起降(电动垂直起降) VRES 可变可再生能源