本报告是作为中量可持续融资设施(MIDSEFF)的碳融资顾问协会的一部分准备的。本金是欧洲重建与发展银行(EBRD),以及银行的特殊股东基金(SSF)的任务 - 另请参见www.turkishcarbonmarket.com本报告的作者是Imogen Long,Carolina Changan,Darragh Conway,Szymon Mikolajczyk(气候焦点),Ebru Voyvoda(中东技术大学),ErinçYeldan(Kadir Have ahmetAt Ath都艾尔·艾尔·艾尔·艾尔·艾尔坦(ErinçYeldan)大学和Engin Mert(气候派手)。我们要对以下有价值的投入和反馈(字母内)表示感谢:AbdulkadirBektaş,AydınSargın,CerenFırat,Ecem Konak,Ecem Konak,Emir Konak,Emir Aldan,Emir Aldan,EyüpKaanMoralian,Ezgi akgedik akgedik akgedik akgedik keemafa keemaf, AllözGündüz,Suatözbek,Suatşağban,OkanUğurlu,Orhan Solak和ÖyküUyanık。来自Ebru,MuharremAşkın,Elif Bakna,ArifCemGündoğan,Gerrit Hold,Ishi MineIşık,Emre Oguzoncul和Jan-Willem van de Ven。在本项目过程中提供支持的完整清单,包括贸易部,能源和自然资源部,环境,城市化和气候改变者,工业部土耳其水泥(Türkçimemento)和土耳其钢生产商协会(Tçüd)公司。
气候变化显着和不利影响了全球环境,生物多样性和可持续的人类发展,主要是通过修改全球温度模式,水文循环和诱导酸性(Habib等,2025)。海洋中的主要反应变量(例如,物理,化学和生物学)可以用作气候变化影响的前哨指标。在当代和即将到来的气候变化情景中,预期的水生生物多样性的灭绝率通常大于陆地物种的灭绝率(Huang等,2021)。小规模的鱼纹(SSFS)显着有助于粮食安全,减轻贫困,就业和维持健康的海洋生态系统(Gatta,2022),因此促进了某些可持续发展的发展目标的实现。尽管是全球数百万的主要生计选择,但SSF遇到了与全球化,气候变化和过度融化相关的不确定性和可变性的升级(Nilsson等,2019)。气候变异性通过影响杂种资源,捕捞者的生计以及更改人口和生产价值来对SSF构成重大危险(Mbaye等人,2023年)。沿海地区尤其容易受到全球变暖的有害影响,这主要是在陆地和海洋因素的收敛中。影响可能是海洋,生态或社会经济。海洋变暖有海洋学的意义包括在杂种季节的改变,弯曲位置的变化以及由于波高和湍流风而引起的与海上活动相关的危险(N'Souvi等,2024)。同时,捕捞收入的不可预测性以及即将来临的气候变化造成的潜在生物多样性损失(Pörtner等人,2023年)分别体现了社会经济和生态经济和生态学的反应。气候变化的其他后果包括沿海水温的变化,降水模式,海平面上升,沿海流量和侵蚀的变化,这显着影响的多样性,分布和丰度,随后影响海洋生物生物系统和生态系统,以及n's sherfculations n s shefivies n's''s''s''''souvient''。例如,海平面的上升通过降低薄壁架的生产力和价值来影响沿海景观和社区的生计(N'Souvi等,2024),从而损害了融化操作的安全性和效率(Bertrand等人,2019年)。此外,降水,暴风雨发生和干旱模式的变化影响了水流量,从而影响了沿海地区的物种运动和招募模式以及盐度水平(Trégarot等,2024)。因此,海温的加速升高(Cheng等,2019),盐度(Cheng等,2020),海平面(Kulp and Strauss,2019),酸性(Cattano等,2018)和脱氧(Kwiatkowski等,2020年),MARRINANT在MARRINANT中,MARRINANT在MARRINANT上,一定的物种和偏移分配,一定的物种和境内迁移。 Venegas等人,2023年),丰度降低(McCauley等,2015),以及生产力的转变(Venegas等,2023),通过改变季节性模式和减少的填充效率和减少的填料(france and france and france and france),从而导致社会经济的影响。
为了评估自由号空间站 (SSF) 和未来任务的空间电源系统组件材料的耐久性,有必要在地面设施中模拟低地球轨道原子氧的加速暴露。美国国家航空航天局 (NASA) 刘易斯研究中心开发的设施提供了定向或散射氧气束、真空紫外线 (VUV) 辐射的加速暴露率,并提供原位光学特性分析。该设施利用电子回旋共振 (ECR) 等离子体源产生低能氧气束。可以在 250 至 2500 纳米的波长范围内原位测量样品的总半球光谱反射率。氘灯提供的 VUV 辐射强度水平在 115 至 200 纳米范围内,相当于三至五个太阳。减速电位分析表明,对于最适合高通量、低能量测试的操作条件,分布离子能量低于 30 电子伏特 (eV)。峰值离子能量低于设施中评估的聚合物保护涂层的溅射阈值能量 (-30 eV),因此允许长时间暴露而不会发生溅射侵蚀。中性物质的热能预计约为 0.04 eV 至 0.1 eV。基于聚酰亚胺 Kapton 质量损失的最大有效通量水平为 4.4x10 16 原子/cm z . s,因此可提供高度加速的测试能力。
稿件收到日期为 2022 年 4 月 11 日;修订日期为 2022 年 6 月 30 日;接受日期为 2022 年 9 月 2 日。当前版本日期为 2022 年 10 月 17 日。Denis Kleyko 的工作部分得到了欧盟“地平线 2020”研究与创新计划(根据玛丽居里资助协议 839179)的支持,部分得到了美国国防高级研究计划局 (DARPA) VIP(超高清项目)和 AIE(HyDDENN 项目)计划的支持,部分得到了空军科学研究办公室 (AFOSR)(资助编号为 FA9550-19-1-0241)的支持,部分得到了英特尔 THWAI 计划的支持。 Pentti Kanerva 的工作部分由 DARPA 的 VIP(超高清项目)和 AIE(HyDDENN 项目)计划资助,部分由 AFOSR(拨款 FA9550-19-1-0241)资助。Bruno A. Olshausen 的工作部分由 DARPA 的 VIP(超高清项目)和 AIE(HyDDENN 项目)计划资助,部分由 AFOSR(拨款 FA9550-19-1-0241)资助,部分由英特尔的 THWAI 计划资助。Jan M. Rabaey 的工作部分由 DARPA 的 VIP(超高清项目)和 AIE(HyDDENN 项目)计划资助。 Dmitri A. Rachkovskij 的工作部分由乌克兰国家科学院资助,资助编号为 0120U000122、0121U000016、0122U002151 和 0117U002286;部分由乌克兰教育和科学部资助,资助编号为 0121U000228 和 0122U000818;部分由瑞典战略研究基金会 (SSF) 资助,资助编号为 UKR22-0024。Friedrich T. Sommer 的工作部分由英特尔的 THWAI 计划资助,部分由 NIH 资助,资助编号为 R01-EB026955,部分由 NSF 资助,资助编号为 IIS-1718991。 (通讯作者:Denis Kleyko。)Denis Kleyko 就职于美国加州大学伯克利分校红木理论神经科学中心,加利福尼亚州伯克利市 94720,同时还就职于瑞典研究机构智能系统实验室,瑞典希斯塔 16440(电子邮箱:denis.kleyko@ri.se)。
值得注意的是,本调查中引用的一些文献可能很难找到;但是,大多数文献可以通过 https://www.hd-computing.com/publications 上的在线出版物列表进行查找。Denis Kleyko 和 Dmitri Rachkovskij 对这项工作做出了同等贡献。DK 的工作得到了欧盟“地平线 2020”计划下玛丽居里个人奖学金 (839179) 的支持。DK 的工作还得到了 AFOSR FA9550-19-1-0241 和英特尔 THWAI 计划的部分支持。 DAR 的工作部分得到了乌克兰国家科学院(拨款编号 0120U000122、0121U000016、0122U002151 和 0117U002286)、乌克兰教育和科学部(拨款编号 0121U000228 和 0122U000818)以及瑞典战略研究基金会 (SSF,拨款编号 UKR22-0024) 的支持。作者地址:D. Kleyko,加州大学伯克利分校,美国加利福尼亚州伯克利市,邮编 94720,瑞典研究机构,瑞典希斯塔,邮编 16440;电子邮箱:denkle@berkeley.edu; D. Rachkovskij,国际信息技术研究与培训中心,乌克兰基辅,03680,吕勒奥理工大学,瑞典吕勒奥,97187;电子邮件:dar@infrm.kiev.ua;E. Osipov,吕勒奥理工大学,瑞典吕勒奥,97187;电子邮件:evgeny.osipov@ltu.se;A. Rahimi,IBM Research–Zurich,瑞士苏黎世,8803;电子邮件:abr@zurich.ibm.com。允许免费复制或复印本作品的全部或部分以供个人或课堂使用,但不得出于营利或商业目的而复制或分发,且复制件首页必须注明此声明和完整引文。必须尊重 ACM 以外的其他人拥有的本作品组成部分的版权。允许以署名形式发表摘要。以其他方式复制、重新发布、发布到服务器或重新分发到列表,需要事先获得特定许可和/或付费。请向 permissions@acm.org 申请许可。© 2023 计算机协会。
本博士学位论文是基于卢莱奥大学材料科学系以及2019年9月至2024年8月之间在霍勒甘斯瑞典AB -Sweden AB -Sweden AB -Sweden ab -Sweden ab -Metasphere(瑞典)进行的工作的基础。该项目由HöganäsAB和瑞典战略研究基金会(SSF)共同创立(工业博士生计划,授予编号ID19-0071)。首先,我想对我的主管Farid Akhtar教授和Johanne Mouzon博士表示最深切的感谢,感谢他们在这本期间的重要指导,建议,支持,支持和耐心。,我将永远感谢你们两个人的机会以及随之而来的所有生活课程。我还要感谢Lars Frisk,Erik Nilsson,Nils Almqvist教授和Material Science系的Martin Eriksson以及Assoc。Liang Yu和JudithHernándezCabello教授卢莱奥科技大学化学工程系,他们的技术支持以及对该研究项目至关重要的不同设备。 A special mention to Urban Rönnbäck, late Andrey Chukanov, Rus- lan Shevchenko, and Yuri Nadezhdin, without whom the Metasphere project would have never existed, as well as to the rest of the Metas- phere Dream Team : Roger Engman, late Tord Kalla, Tomas Sandberg, Tina Ståhl Lagerlöf, and William Larsson for their即使在最艰难的时期,也支持和热情。 也要感谢Denis Oshchep-Kov,Sven Bengtsson和HöganäsAB的Nils Jonsson何时何时何时介入,并确保该项目可以完成。 没有你们所有人,我就无法做到这一点。Liang Yu和JudithHernándezCabello教授卢莱奥科技大学化学工程系,他们的技术支持以及对该研究项目至关重要的不同设备。A special mention to Urban Rönnbäck, late Andrey Chukanov, Rus- lan Shevchenko, and Yuri Nadezhdin, without whom the Metasphere project would have never existed, as well as to the rest of the Metas- phere Dream Team : Roger Engman, late Tord Kalla, Tomas Sandberg, Tina Ståhl Lagerlöf, and William Larsson for their即使在最艰难的时期,也支持和热情。也要感谢Denis Oshchep-Kov,Sven Bengtsson和HöganäsAB的Nils Jonsson何时何时何时介入,并确保该项目可以完成。没有你们所有人,我就无法做到这一点。过去和现在的材料科学系的同事,向老,新,迷失和发现的朋友(向Ana,Marina和Camilla大喊大叫,Mina Klippor I Stormen),最后但并非最不重要的一点是:感谢您的无条件支持。
战略家职能领域 1. 简介 a. 目的。陆军战略家(职能领域 59 军官)提供成功的创新解决方案,以应对当代安全环境的复杂挑战。通过专门的教育、培训和经验,战略家在制定、实施和阐明战略方面发展专业知识,并擅长领导作战和机构战役规划。他们利用正式和非正式的程序和流程在跨区域、全领域和多功能环境中制定战略和计划。战略家将联合能力与其他军种、美国政府机构以及盟友和合作伙伴整合在一起,以追求战略目标。他们了解如何将军事力量与其他国家力量工具同步,以在广泛的竞争和冲突中取得优势。FA59 战略家是高级总部的果断领导者,负责组织、设计、指导和指挥多学科、联合和联盟团队制定军事行动方案来解决复杂问题。战略家在时间背景下思考,在多个视野中进行规划,并且能够适应模糊性和紧张局势。战略家通过创造和传达讲述故事的产品,同时运用合理的逻辑和令人信服的证据,使高级领导者能够做出充分知情的决策,从而得出实现预期目标的清晰、连贯的选项。b. 支持者信息。DCS,G–3/5/7 是 FA59 的支持者。主任,G–3/5(战略、计划和政策)是陆军参谋部 (ARSTAF) 负责人,战略领导部 (DAMO–SSF) 的 G–3/5/F 是主要责任办公室。FA59 由人力资源司令部军官人事管理局的作战支援部管理。更多信息可在 https://www.milsuite.mil/book/groups/strategist 找到。c. 职能能力。通过高级总部的培训、教育和反复任务,FA59 军官掌握了六项职能能力,为晋升为上校做准备:
属性(Ruiz-Ruiz等,2017)。由于LA具有羧基和羟基官能团,因此也可以将其视为一个平台和中间体,用于转化为几种不同的有用和有价值的化学物质(Gao等,2011)。la是生物技术生产几乎完全通过石化途径盛行的大规模化合物之一,大约90%通过微生物发酵实现了当前生产的90%(Macedo等,2020)。使用广泛的微生物和不同类型的底物来优化产量和生产率(Tian等,2021),LA的发酵生产已被广泛研究了多年。最著名的野生型LA生产者是乳酸细菌(LAB),它们是非散发形式,革兰氏阳性,非有氧或气化剂,耐酸和严格发酵生物的(Fidan等,2022)。在实验室中,乳酸杆菌是具有最大商业兴趣的属,因为它具有同质性,并且主要通过将一个分子转换为LA分子的LA分子,主要是通过Embden -Meyerhoff - Parnas(EMP)途径产生的(Singhvi等,2018)。重组大肠杆菌的重组菌株,coagulans芽孢杆菌,谷氨酸杆菌,地衣芽孢杆菌和代谢酵母菌的生产也已评估(Awasthi等,2018)。尽管长期以来已经建立了工业规模的生物技术生产,但仍有进一步改进的空间(Abedin等,2023)。使用实验室的主要障碍是它们的复杂营养需求和中介体,分别导致成本和污染风险增加(Abedi和Hashemi,2020年)。关于碳底物,几种农业的低或无价废物,例如糖蜜,汁液废物和淀粉类生物量奶油浪费,传统上已被发酵成LA(Alexandri等人,2019年; Sakr等,2021年)。最近,还提出了农业和林业残留物作为碳源(Ajala等,2020; Yankov,2022)。但是,原材料和发酵的高成本 - 分离过程以及高度产生的LA生产微生物的选择严重限制了此类应用(Ren等,2022)。大量努力致力于制定发酵策略,例如合并生物处理(CBP),同时进行糖精和发酵(SSF),以及同时的糖精和共同发酵和共同发作(SSCF),作为希望的替代方案(Mazzoli,202211221)。为此,已经实施了两个主要概念,即基于共培养的合成微生物联盟的发展(Sun等,2021)和基因工程的微生物(Levit等,2022)。与纯培养物相比,微生物联盟已被证明不容易受到环境干扰和污染的影响,同时表现出较高的转化效率(Sun等,2019)。然而,由于微生物种群之间的复杂相互作用,共同培养,增长动态,监测和控制的可靠方法仍然具有挑战性(Mittermeier等人,2023年)。代谢工程旨在开发具有有效产物形成的单菌株,但对于微生物的主要遗传和代谢重新设计需要大量的努力(Hossain等,2023)。LA生产的第二个瓶颈是原料处理和灭菌的总体过程成本(Marchesan等,2021),除非使用嗜热菌株(Garita-Cambronero等,2021年),否则这是避免污染所必需的,否则