摘要 —脑电图 (EEG) 因其便携性、高时间分辨率、易于使用和低成本而被广泛应用于脑机接口 (BCI),使瘫痪者能够直接与外部设备通信和控制外部设备。在各种 EEG 范式中,基于稳态视觉诱发电位 (SSVEP) 的 BCI 系统使用以不同频率闪烁的多个视觉刺激(例如计算机屏幕上的 LED 或盒子)由于其快速的通信速率和高信噪比在过去几十年中得到了广泛的探索。在本文中,我们回顾了基于 SSVEP 的 BCI 的当前研究,重点关注能够连续、准确检测 SSVEP 并因此实现高信息传输速率的数据分析。本文描述了主要的技术挑战,包括信号预处理、频谱分析、信号分解、空间滤波特别是典型相关分析及其变体和分类技术。还讨论了自发性大脑活动、心理疲劳、迁移学习以及混合 BCI 方面的研究挑战和机遇。
摘要 - 电脑摄影仪(EEG)已被广泛用于脑部计算机界面(BCI),这使瘫痪的人能够由于其便携性,高时间分辨率,较高的时间分辨率,易用性和低成本而直接与外部设备进行通信和控制。基于稳态的视觉诱发电位(SSVEP)基于BCI的BCI系统,该系统使用多种视觉刺激(例如计算机屏幕上的LED或盒子)在不同频率上流动的数十年来,由于其快速通信速率和高信号速率和高信号率而被广泛探索。在本文中,我们回顾了基于SSVEP的BCI的当前研究,重点介绍了能够持续,准确检测SSVEP的数据分析,从而可以进行高信息传输率。在本文中描述了主要的技术挑战,包括信号预处理,频谱分析,信号分解,特定规范相关性分析及其变化以及分类技术的空间过滤。还讨论了自发性大脑活动,精神疲劳,转移学习以及混合BCI的研究挑战和机遇。
摘要:在本文中,我们提出了基于规范相关分析(CCA)的EEG信号的分类算法,并与自适应过滤整合。它可以增强大脑 - 计算机接口(BCI)拼写中的稳态视觉诱发电势(SSVEP)的检测。通过删除背景脑电图(EEG)活动,在CCA算法前采用了一种自适应过滤器来提高SSVEP信号的信噪比(SNR)。开发了整体方法是为了整合与多个刺激频率相对应的递归最小二乘(RLS)自适应过滤器。该方法由实际实验从六个目标记录的SSVEP信号和Tsinghua University的40个目标的公共SSVEP数据集中记录下来的SSVEP信号。比较了CCA方法的精度和基于CCA的集成RLS滤波器算法(RLS-CCA方法)。实验结果表明,与纯CCA方法相比,提出的基于RLS-CCA的方法显着提高了分类精度。尤其是当脑电图的数量较低时(三个枕发电极和五个非枕骨电极)时,其优势更为明显,精度达到91.23%,这更适合于高密度EEG不容易收集的可穿戴环境。
摘要:基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)拼写器因其高信息传输速率(ITR)而受到广泛研究。本文旨在提高SSVEP-BCI在高速拼写方面的实用性。系统从自行开发的专用EEG设备获取脑电图(EEG)数据,并将刺激布置为键盘。对任务相关成分分析(TRCA)空间滤波器进行修改(mTRCA)以进行目标分类,并且在离线分析中与原始TRCA相比表现出明显更高的性能。在在线系统中,利用基于贝叶斯后验概率的动态停止(DS)策略来实现可变的刺激时间。此外,还优化了时间滤波过程和程序以促进在线DS操作。值得注意的是,在线 ITR 平均达到 330.4 ± 45.4 比特/分钟,明显高于固定停止 (FS) 策略,峰值 420.2 比特/分钟是迄今为止使用 SSVEP-BCI 的最高在线拼写 ITR。所提出的系统具有便携式 EEG 采集、友好的交互和可变的命令输出时间,为基于 SSVEP 的 BCI 提供了更大的灵活性,并有望实现实际的高速拼写。
摘要 — 稳态视觉诱发电位 (SSVEP) 因其众多优点而成为脑机接口 (BCI) 中最广泛使用的模式之一。然而,由于 SSVEP 中谐波的存在和响应频率范围有限,因此很难在不牺牲接口其他方面或对系统施加额外限制的情况下进一步扩大目标数量。本文介绍了一种用于 SSVEP 的新型多频刺激方法,并研究了其有效增加呈现目标数量的潜力。所提出的刺激方法是通过叠加不同频率的刺激信号获得的,具有尺寸效率高、允许单步目标识别、对可用频率范围没有严格限制、适用于自定步调的 BCI,并且不需要特定的光源。除了刺激频率及其谐波之外,诱发的 SSVEP 波形还包括刺激频率的整数线性组合的频率。使用仅以频率和谐波为参考的典型相关分析 (CCA) 解码从九名受试者收集的 SSVEP 的结果也证明了在基于 SSVEP 的 BCI 中使用这种刺激范式的潜力。
抽象目标。本研究旨在建立一个广义的转移学习框架,以通过利用跨域数据传输来提高稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS)的性能。方法。我们通过结合了最小二乘转换(LST)的转移学习来增强基于最新的模板的SSVEP解码,以利用跨多个域(会话,主题和脑电图蒙太奇)利用校准数据。主要结果。研究结果验证了LST在跨域传输现有数据时消除SSVEP的可变性的功效。此外,基于LST的方法比标准与任务相关的组件分析(TRCA)的方法和非第一个天真转移学习方法明显更高的SSVEP解码精度。意义。这项研究证明了基于LST的转移学习能够在各种情况下对其原理和行为进行深入研究,从而利用主题和/或设备的现有数据。当校准数据受到限制时,提出的框架显着提高了标准TRCA方法的SSVEP解码精度。其在校准减少方面的性能可以促进基于SSVEP的BCIS和进一步的实用应用。
摘要:利用四类相位编码刺激,开发了基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统。将高于临界融合频率(CFF)的60Hz闪烁光诱发的SSVEP与15Hz和30Hz的SSVEP进行比较。采用任务相关成分分析(TRCA)方法检测脑电图(EEG)中的SSVEP成分。对17名受试者的离线分析表明,60Hz的最高信息传输速率(ITR)为29.80±4.65bpm,数据长度为0.5s,分类准确率为70.07±4.15%。在线BCI系统在4s的60Hz下达到平均分类准确率为87.75±3.50%,ITR为16.73±1.63bpm。具体来说,受试者在60Hz下的最大ITR为80bpm,持续时间为0.5s。虽然60Hz的BCI性能低于15Hz和30Hz,但行为测试的结果表明,在无闪烁感知的情况下,60Hz的BCI系统比15Hz和30Hz的BCI系统更舒适。相关性分析表明,信噪比(SNR)较高的SSVEP对应更好的分类性能,舒适度的提高伴随着性能的下降。本研究证明了使用无感知闪烁的用户友好型SSVEP BCI的可行性和潜力。
摘要:在基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 研究的频率识别各种方法中,任务相关成分分析 (TRCA) 引起了广泛关注,它提取用于对脑电图 (EEG) 信号进行分类的判别空间滤波器。与现有的 SSVEP 方法相比,基于 TRCA 的 SSVEP 方法具有更低的计算成本和更高的分类性能。尽管基于 TRCA 的 SSVEP 方法很实用,但在使用短窗口 EEG 信号的情况下,它仍然会受到频率识别率下降的影响。为了解决这个问题,我们在此提出了一种改进的 SSVEP 解码策略,该策略通过执行两步 TRCA 不受窗口长度影响。所提出的方法重用了与 TRCA 生成的目标频率相对应的空间滤波器。随后,所提出的方法通过关联单个模板和测试数据来强调目标频率的特征。为了评估所提方法的性能,我们使用了包含 35 名受试者的基准数据集,并确认与其他现有 SSVEP 方法相比,其性能显著提高。这些结果表明,该方法适合作为基于 SSVEP 的 BCI 应用的有效频率识别策略。
患有肌萎缩侧索硬化症 (ALS)、严重脑瘫、头部创伤、多发性硬化症和肌营养不良症的患者无法与外部环境进行交流(闭锁综合征)。一些研究小组试图为神经肌肉受损患者开发独立于周围神经和肌肉的新型交流技术。一种有前途的方法是使用神经电信号,例如脑电图 (EEG) 或皮层内的单元神经活动,这些信号源自人脑作为控制或通信信号。通过执行设计的任务,可以生成特定的脑信号模式来激活外部设备或表达用户意图。这种技术被称为“脑机接口 (BCI)”。在我们的实验室中,我们提出了一种基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI)。我们仅使用一个放置在 Oz 位置的 EEG 电极,参考国际 EEG 10-20 系统,参考电极位于右乳突。由发光二极管 (LED) 或液晶显示器 (LCD) 中相位标记闪光引起的 SSVEP 被实时识别,以便控制计算机光标、遥控汽车、多媒体设备、键盘输入系统等。准确性和信息
摘要 — 为了增强基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的目标识别性能,已经提出了各种空间滤波器。当前的方法仅从相应刺激中提取目标相关信息来学习空间滤波器参数。然而,来自邻近刺激的 SSVEP 数据也包含目标刺激的频率信息,可用于进一步提高目标识别性能。在本文中,我们提出了一种结合来自邻近刺激的 SSVEP 来增强目标相关频率信息的新方法。首先,通过最大化对应于目标及其邻近刺激的 SSVEP 数据的协方差之和来获得空间滤波器。然后计算空间滤波模板和测试数据之间的相关特征以进行目标检测。为了进行性能评估,我们使用来自 35 名受试者的 40 类基准数据集和来自 11 名受试者的 12 个目标自收集数据集进行了离线实验。与最先进的空间滤波方法相比,所提出的方法在分类准确率和信息传输速率 (ITR) 方面表现出优势。比较结果证明了所提出的空间滤波器对于基于 SSVEP 的 BCI 中的目标识别的有效性。