2023-24“基于个性化生物物理网络建模的皮质激发抑制平衡的青少年成熟。”第29届人类脑图组织(加拿大蒙特利尔) / 32年度计算神经科学会议(德国莱比锡) /第7届Bigbrain Workshop(冰岛Reykjavík,冰岛) /第30届人类脑图组织的年度会议(Seoul,Seoul,Southera) /伯恩斯坦(Seoul),伯恩斯坦(Bernstein) /伯恩斯坦(Bernstein)会议(Frankfurt,Frankany)< /
正确的方程式:“我认为该行业面临着一个真正的挑战,负责和可持续性。关于真正可持续性以及如何衡量的是很多困惑。没有明确的准则,我们就有绿色的风险。这就是为什么我相信我们的行业需要确保我们都按照相同的规则玩耍,而不是误导客户只是为了进行销售而误导客户。随着EPR之类的事情变得越来越普遍,我们在定义明确的框架内运作至关重要。我们还需要对决策者进行决定的真正影响。例如,塑料本质上不是不好的 - 我们可以可持续地使用它们并创建圆形系统。”
如今,纳米技术已广泛传播,并且在许多领域,尤其是医疗领域中起着重要作用。纳米颗粒(NP)具有独特的物理化学特性,从而提供了其他活动,这些活动鼓励它们在许多应用中使用。纳米颗粒可以通过三种主要方法合成:化学,物理和生物学。最好的方法是被认为是绿色,可持续,环保和经济的生物综合。这取决于生物或其提取物,包括植物,细菌,藻类,真菌和酵母,而不是有毒化学物质。酵母是有前途的微生物,最近引起了许多研究人员的注意,发现它们在纳米颗粒的生物合成中的潜力,可以应用于不同的领域。许多研究证明了各种酵母菌物种合成各种金属和金属氧化物纳米颗粒的能力,无论是细胞内还是细胞外。这样的纳米颗粒包括银,金,硒,硫硫磺,锌硫,钯,钯,二氧化锰和二氧化钛纳米颗粒。酵母介导的纳米颗粒具有生物医学活性,例如抗癌,抗氧化剂,抗渗透性和抗菌剂。研究表明,酵母合成的纳米颗粒具有安全和无毒的特性。与使用细菌和真菌对NPS生物合成的研究相比,较少的研究重点是在NPS生物合成中使用酵母,这使其成为在生物合成和NPS应用中更科学发现的有前途的领域。本综述概述了涉及酵母介导的纳米颗粒的生物合成和生物医学应用的先前研究。
摘要:该研究涉及两个基于羟基苯基二氧素基衍生物的合成和表征,即(2E,3E)-2,3-二羟基唑-6,7-二甲基-1-7-二甲基-1,2,3,3,3,4-四氢喹啉(QN-CH 3)(QN-CH 3)(QN-CH 3) (2E,3E)-6-氯-2,3-二氢1,2,3,4-四氢喹啉(QN-CL)。使用各种方法(例如电化学测试),扫描电子显微镜(SEM)等表面分析技术以及密度功能理论(DFT)和分子动力学(MD)(MD)模拟,使用各种方法,将这些衍生物作为对低盐酸溶液的抑制剂的有效性。是从电流(I-E)曲线中观察到的,QN-CH 3和QN-CL均充当阴极型抑制剂,其抑制效率随浓度而提高。在10-3 m的浓度下,QN-CH 3的抑制效率最高为89.07%,而QN-CL的抑制效率为87.64%。电化学阻抗光谱(EIS)测试指向通过电荷转移控制的腐蚀过程。与QN-CL相比,QN-CH 3的出色性能归因于其分子结构的性质。此外,发现根据Langmuir等温线,基于羟基苯二氧甲氧氨基衍生物粘附在碳钢表面上,并在高温下保持其抗腐蚀性能,如SEM分析所证实。DFT计算和MD模拟提供了对腐蚀抑制机制的进一步了解。关键字:基于羟基苯二氧甲素衍生物;碳钢腐蚀抑制;电化学测量; SEM分析;理论研究。
摘要:本研究合成并表征了两种肼基喹喔啉衍生物,即(2E,3E)-2,3-二肼基-6,7-二甲基-1,2,3,4-四氢喹喔啉(QN-CH 3 )和(2E,3E)-6-氯-2,3-二肼基-1,2,3,4-四氢喹喔啉(QN-Cl)。采用电化学测试、表面分析技术(如扫描电子显微镜(SEM))以及密度泛函理论(DFT)和分子动力学(MD)模拟等各种方法测试了这些衍生物在 363 K 的 1.0 M 盐酸溶液中作为低碳钢的抑制剂的有效性。从电流-电位(IE)曲线可以看出,QN-CH 3 和 QN-Cl 均充当阴极型抑制剂,其抑制效率随浓度的增加而增加。在 10-3 M 浓度下,缓蚀效率达到最大值:QN-CH 3 为 89.07%,QN-Cl 为 87.64%。电化学阻抗谱 (EIS) 测试表明腐蚀过程由电荷转移控制。QN-CH 3 比 QN-Cl 具有更优异的性能,这归因于其分子结构的性质。此外,SEM 分析证实,肼基喹喔啉衍生物按照 Langmuir 等温线粘附在低碳钢表面,并在高温下保持其防腐性能。DFT 计算和 MD 模拟进一步深入了解了腐蚀抑制机理。关键词:肼基喹喔啉衍生物;低碳钢腐蚀抑制;电化学测量;SEM 分析;理论研究。
药剂师,来自里约热内卢联邦大学的自然产品化学博士学位和法国科学科学和科学Chimiques et laSanté,来自法国I大学,并获得了Oswaldo Cruz Foundation的博士后学位,并获得了加拿大加拿大蒙特利尔大学的奥斯瓦尔多·克鲁兹基金会(Oswaldo Cruz Foundation)。 Fluminense联邦大学药学学院获得许可的副教授。
摘要:旁道攻击是对现实世界中部署的密码系统的巨大威胁。针对旁道攻击的一种有效且可证明安全的对策是掩蔽。在本文中,我们详细研究了密钥封装机制 Saber 的高阶掩蔽技术。Saber 是美国国家标准技术研究所后量子标准化程序中基于格的最终候选者之一。我们对最近为 Saber 提出的不同掩蔽算法进行了详细分析,并提出了一种优化的高阶掩蔽 Saber 实现。与未掩蔽的 Saber 相比,我们针对一阶、二阶和三阶掩蔽 Saber 提出的技术分别具有 2.7 倍、5 倍和 7.7 倍的性能开销。我们表明,与另一种基于格子的最终方案 Kyber 相比,Saber 的性能随着掩码阶数的增加而下降得更少。我们还表明,高阶掩码 Saber 需要的随机字节比高阶掩码 Kyber 少。此外,我们将掩码实现调整为 uSaber,这是 Saber 的一个变体,专门设计用于实现高效的掩码实现。我们介绍了 uSaber 的第一个掩码实现,表明它在任何阶数上确实比掩码 Saber 至少高出 12%。我们在 ARM Cortex-M4 微控制器上提供了我们提出的所有掩码方案的优化实现。
摘要:微生物通常会生产许多高需求的工业产品,例如燃料,食品,维塔米和其他化学物质。微生物菌株是微生物的菌株,可以通过代谢工程进行优化以改善其技术特性。代谢工程是克服细胞调节以获得所需产品或生成宿主细胞通常不需要产生的新产品的过程。遗传操作(例如基因敲除)的预测是代谢工程的一部分。基因敲除可用于优化微生物菌株,例如最大化感兴趣的化学品的产量。代谢和基因工程对于培养感兴趣的化学物质很重要,因为没有它们,许多微生物的产物通常很低。结果,本文的目的是提出蝙蝠算法和代谢调节(BATMOMA)的最小化的组合,以预测哪些基因敲除,以提高埃斯切里希亚大肠杆菌(E. Coli)中的琥珀酸和乳酸产量。