摘要 - 我们提出并在实验上基于双波长DFB激光器,基于四个相移的Moiré光栅(4PS-SMG)。通过在山脊波导的每一侧设计4PS光栅,在腔内的两侧进行了等效的引入,从而实现了两种π相移,从而使设备能够展示双波长激光。山脊波导每一侧的4PS-SMG的采样周期分别为4668 nm和4609 nm。可以通过电子束光刻(EBL)以高质量实现采样周期的59 nm差异。此外,侧壁光栅结构只需要一个暴露才能定义山脊波导和光栅,从而避免了与光栅和山脊波导之间的未对准有关的问题。将电流注入130 mA至210 mA范围内的DFB激光器时,该设备会提供出色的双波长性能,其功率差在两种主要模式之间的功率差不到2 dB。该设备在39.4 GHz处提供高质量的射频(RF)信号,狭窄的线宽约为5.0 MHz。索引项 - 毫米波,双波长DFB激光器,DFB半导体激光器,采样Moiré光栅。
科学的底部拖网调查是沿着大陆货架和海洋和海洋的斜坡进行的生态观察计划,这些计划采样了与海底相关的海洋社区。这些调查报告了时空的发生,丰度和/或体重的发生,并有助于渔业管理以及人口和生物多样性研究。底部拖网调查是在世界各地进行的,代表了了解海洋生物地理,宏观生态学和全球变化的独特机会。但是,将这些数据结合在一起以进行跨生态系统分析仍然具有挑战性。在这里,我们提供了一个综合数据集,该数据集由29个公开可获得的底段调查,在18个国家/地区的国家水域进行了标准化和预处理,总共涵盖了2,170个采样的鱼类分类单元,并从1963年至2021年收集了216,548次拖船。我们描述了创建数据集,标志和标准化方法的处理步骤,我们开发了这些方法,以帮助用户使用稳定的区域调查足迹进行时空分析。该数据集的目的是在全球变化的背景下支持研究,海洋保护和管理。
昼夜节律,基础和类固醇分泌的季节性变化与几种哺乳动物物种的脑体积变化有关。然而,人类类固醇激素产生的昼夜节律变化与人类脑形态的节奏变化之间的关系在很大程度上是未知的。在这里,我们研究了类固醇激素中昼夜浮动之间的关系,在一项男性的精确成像研究中,男性在上午7点完成了40次MRI和血清学评估。和晚上8点在一个月的过程中,针对激素浓度在其峰值和Nadir处。昼夜浮动与全球和区域脑形态的明显变化相关。从早晨到晚上,总脑体积,灰质体积和皮质厚度降低,与类固醇激素浓度(睾丸激素,雌二醇和皮质醇)的降低一致。并行,脑脊液和心室尺寸从A.M.到下午全球变化是由枕骨和顶叶皮层内的减少驱动的。这些发现突出了脑形态中的自然节奏,这些节奏与类固醇激素的昼夜潮流和流动保持在一起。
从放射性材料存储池的墙壁上存在的少量生物膜(例如,如果分类学表征和不同生物量贡献的估计是目标是目标)。尽管提取的DNA和测序是最广泛应用的方法,但提取的DNA上的16S/18S rRNA扩增是其在定量方面的可靠性,因为产量可以依赖于物种。在这里,我们提出了一种串联质谱法蛋白型蛋白型方法,该方法包括获取肽数据并将其解释然后针对通才数据库而没有任何先验的数据库。将肽序列信息转化为有用的分类信息,该信息允许在不同的分类学等级获得不同的生物量贡献。第一次使用这种新方法来分析从用于将放射性来源存储在核设施中的池中收集的微量材料中分析生物膜的组成。对于这些生物膜,我们报告了三个属的鉴定,即鞘花,花椰菜和酸源,以及它们通过元蛋白质组学的功能表征,这表明这些生物是代谢活性的。基因本体论的差异表达在两种主要微生物之间的goslim术语突出了它们的代谢专业化。
摘要。人类活动识别在包括医疗保健和智能家居在内的各个领域都起着至关重要的作用。随着配备环境传感器的智能房屋的越来越多,人们对利用人工智能技术的兴趣越来越兴趣,以理解和认识到这些环境中的人类活动。但是,环境传感器收集的数据的规则和嘈杂性质提出了独特的挑战。为了应对这些挑战,我们建议使用接受传感器激活序列训练的预训练的嵌入式嵌入,通常是基于类似于GPT的架构的算法,以证明在智能家庭中日常生活的分类表现。此外,我们利用从一个环境中获得的知识来增强另一个环境的活动识别,研究转移学习的概念。结果表明,GPT变压器解码器的方法在多个数据集的精度和平衡精度方面优于其他算法。这些发现还突出了转移学习的潜力,从干净且大的数据集中,GPT跨解码器预先训练的嵌入在各种情况下显示出令人鼓舞的结果。
行业4.0应用程序涉及更多数量的传感器或物联网(IoT)设备来支持行业自动化。它涉及更多的计算来分析从处理单元的几个关键部分收集的传感器数据。稀疏信号处理是在通信和信号处理领域中具有许多应用的。本文介绍了一种新的方法,可以借助水平交叉采样(LCS)和基于回溯的基于回溯的迭代硬阈值(BIHT)算法进行重建。该过程涉及,信息信号使用发射机侧的不均匀采样将信息信号转换为随机稀疏信号,然后可以使用接收器侧的BIHT算法将其重建。模拟结果表现出所提出的BIHT重建的出色性能。
研究文章| Behavioral/Cognitive Diurnal fluctuations in steroid hormones tied to variation in intrinsic functional connectivity in a densely sampled male https://doi.org/10.1523/JNEUROSCI.1856-23.2024 Received: 29 September 2023 Revised: 3 April 2024 Accepted: 6 April 2024 Copyright © 2024 Grotzinger et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
大多数哺乳动物的生理学都受到生物节律的控制,包括内分泌系统和时变激素分泌。精确的神经影像学研究提供了独特的见解,即内分泌系统如何动态调节人脑的各个方面。最近,我们建立了雌激素推动连通性的广泛模式并增强大规模脑网络在连续30天进行一次采样的女性中的全球效率,从而捕获完整的月经周期。类固醇激素的产生也遵循明显的正弦模式,睾丸激素的峰值在上午6点至7点之间。下午7点至8点之间的Nadir为了捕捉大脑对激素产生的昼夜变化的反应,我们对一个健康的成年男子进行了一项伴侣精度成像研究,该研究连续30天完成一次MRI和静脉穿刺。结果在睾丸激素,17β-雌二醇(雌激素的主要形式)和皮质醇的主要形式中确定了稳健的昼夜弹性。标准化的回归分析揭示了睾丸激素,雌二醇和皮质醇浓度与一致性全脑模式之间的广泛关联。特别是,背注意网络中的功能连通性与昼夜闪烁的激素结合在一起。此外,将男人和自然骑自行车的女人之间的密集采样数据集进行比较,表明性激素的发光与性别中的全脑相干性模式相关联,并且与男性的身高相关。一起,这些发现增强了我们对类固醇激素作为快速神经调节剂的理解,并提供了证据表明,类固醇激素的昼夜变化与全脑功能连通性的模式有关。
图1估计大脑网络内相关系数(ICC)的建议方法的图形说明。(a)对于一个来自单个受试者的n区域的规范大脑网络(由大脑上的不同颜色表示),大脑网络ICC可用于估计跨K重复fMRI运行的fMRI测量值(X)的受试者内部可靠性,用于测量给定的认知状态。每列表示特定的fMRI运行中的测量值,每个覆盖的红色椭圆形代表运行中区域之间的可变性。另一方面,每行代表与大脑网络中特定区域相对应的重复测量值,每个覆盖的绿色椭圆形代表区域内(或在运行之间)内的可变性。大脑网络ICC仅仅是归因于区域间变异性的总变异性的比例,并假定值在0到1之间。(b)一个具有高脑网络ICC(接近1)的假设大脑网络,表明k运行中fMRI测量的受试者内部可靠性很高。较窄的绿色椭圆形表明区域内/跑步之间的变异性较小,更宽的红色椭圆形表示大脑网络区域之间的变异性较大。(c)一个假想的大脑网络ICC(接近0),表明在K运行中fMRI测量的受试者内部可靠性差。较宽的绿色椭圆形表示较大的区域内/运行之间的变异性,较小的红色椭圆形表明区域间变异性相对较小。fMRI,功能磁共振成像。