学校对以下主题进行了最新的审查:(i)控制参数,这些参数确定沉积环境中沉积物的产生和重新分布; (ii)液压分类和沉积相是早期成岩作用的诱发因素; (iii)沉积学与成岩过程之间的关系; (iv)组成数据作为理解和预测纹理的工具建模; (v)沙子如何转化为砂岩:对压实和碳酸盐,粘土矿物质和石英水泥和替代品的形成(VI)预测储层质量:碳捕获和地热能案例研究。
虽然碳酸盐和砂岩都包含储层作为储存溶液,但由于矿物学,沉积过程和成岩史的差异,它们在孔隙率和渗透性方面有所不同[4]。碳酸钙(CACO 3)和碳酸镁(MGCO 3)矿物质是碳酸盐地层的主要成分,包括石灰石和海豚。由于这些矿物会在地下条件下与CO₂反应,因此该过程称为矿物捕获。矿物捕获方法是一种高度稳定的储存形式,其中co co co co与矿物质反应形成固体碳酸盐,从而最大程度地减少了连续泄漏的风险[6]。尽管如此,碳酸盐储层通常由异质孔隙度和渗透率表示,因此在单个地层上井之间的这些特性非常不同。复杂的成岩化过程,碳酸盐地层经历,包括溶解和再结晶,这可能会产生孔隙空间的斑驳分布,并改变储层内的流体流动路径[9]导致碳酸盐地层的异质性。
摘要:地下储氢已被公认为储存大量氢气的关键技术,有助于氢经济的工业规模应用。然而,人们对地下储氢的了解甚少,导致项目风险很高。因此,本研究考察了盖层可用性和氢气注入率对氢气回收率和氢气泄漏率的影响,以解决与地下储氢有关的一些基本问题。建立了三维非均质储层模型,并利用该模型分析了盖层和氢气注入率对氢气地下储存效率的影响。结果表明,盖层和注入率对氢气泄漏以及捕获和回收的氢气量都有重要影响。结论是,当没有盖层时,较高的注入率会增加氢气泄漏。此外,较低的注入率和盖层可用性会增加回收的氢气量。因此,这项工作为地下储氢项目评估提供了基本信息,并支持能源供应链的脱碳。
I.由于将热羽储存在“温水井中),对舍伍德砂岩含水层的液压性能有什么影响?II。 热羽的温度变化如何改变对舍伍德砂岩含水层液压特性的影响? iii。 测试区域中Sherwood砂岩含水层的热存储性能是什么? iv。 热储存性能如何受热羽流温度变化的影响? V. Sherwood砂岩含水层异质性对热存储性能有什么影响? vi。 如何将ATE纳入北爱尔兰的未来能源矩阵?II。热羽的温度变化如何改变对舍伍德砂岩含水层液压特性的影响?iii。测试区域中Sherwood砂岩含水层的热存储性能是什么?iv。热储存性能如何受热羽流温度变化的影响?V. Sherwood砂岩含水层异质性对热存储性能有什么影响?vi。如何将ATE纳入北爱尔兰的未来能源矩阵?
鉴于对Heshui地区低渗透性砂岩储层的特征和控制因子的不可或缺的理解,本研究检查了Chang 2储层的显微镜矿物质和孔结构。它使用一系列方法(包括成像和间接方法)分析了其主要的控制因子。te结果表明,研究区域中张2储层的岩石以岩性的Arkose和Feldspathic碎屑石英砂岩为主。te储层空间会形成毛孔内孔,长石溶解的孔,岩石溶解的孔和晶间孔。有时会发现微裂纹。平均孔隙率为10.5%,平均渗透率为2.2 MD,具有低孔隙率 - 脱透透明度储层。在储层开发过程中,由构造效应产生的小鼻子形成的陷阱为良好的储层空间提供了机会。沉积和成岩过程在一定程度上控制了储层孔隙度的发展程度和方向。多段毛细管压力曲线和较长的缺失区域对应于相对较好的毛孔 - 螺旋式结构。伊利特是决定储层质量的主要成岩粘土矿物。三个效应都为储层的整体发展做出了贡献。
沉积岩被广泛用作地质储层,并用作地理能源系统的宿主岩石。沉积岩的热性能,例如热有导度,热扩散率和体积特异性热量,在适合这些应用中起着至关重要的作用。这项研究使用扫描电子显微镜(SEM)分析研究了30种不同的砂岩样品的热性能。比较具有不同热性能的岩石样品的SEM图像,以分析纹理特性如何影响热性能。我们的结果表明,沉积岩的热性能高度取决于其质地。特别是,我们发现具有较高粗糙度的岩石倾向于表现出较低的导热率和热扩散率。毛孔和裂缝的存在影响了砂岩岩石检查的热特性。从图像中提取的平均表面粗糙度显示出强大的负电导率和扩散率(分别为−0.59和-0.6),而实验得出的是,由于其复合效应对热传递的效果可能会导致孔,裂纹和空隙区域的阴性负相关(-0.18和 - 0.17)的显而易见的负相关性(-0.18和 - 0.17)。空隙的大小,形状和分布会影响传热,互连的空隙为热流提供网络,而较小的空隙更有效地捕获热量。沉积岩的质地在确定其热性能中起着至关重要的作用。[doi:10.1115/1.4064030]该知识可用于优化对应用中砂岩储层的潜力的理解,例如地热能或热能存储。
地震特征的紧密燃气砂岩(TGS)储层对于识别有希望的气轴承区是必不可少的。然而,由于TGSS中的复杂微观结构,探索地震中弹性弹性特性的岩石物理显着性很大。同时,砂岩和泥岩的层状结构在准确提取至关重要的紧密砂岩特性方面加剧了困难。提出了一种基于岩石物理的综合框架,以从地震数据中估算TGSS的储层质量。TGSS是使用双孔隙率模型建模的,为计算岩石物理模板提供了用于储层参数估计的实用工具。V p / v S的比率用于通过从电线日志中评估的岩性区分来评估的阈值在目标范围内预测TGS储层的累积厚度。这种方法还促进了更好地捕获TGSS的弹性特性进行定量地震解释。使用基于电线对数分析获得的相关性从P波阻抗中估算了总孔隙率。之后,构建了与估计的总孔隙率集成的三维岩石物理模板,以解释速度比和大量模量的微裂缝孔隙率和气体饱和度。集成框架可以最佳估计主导质量的参数。基于获得的参数提出的指标的结果与气体生产非常吻合,并且可以用于预测有希望的TGS储层。©2023作者。此外,结果表明,考虑微裂纹孔隙率可以更准确地预测高质量的储层,从而进一步验证了所研究区域中提出的方法的适用性。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
网格尺寸(x和y):1000 x 1000英尺的层数:149层网格单元数:5,154,804区域数量:8包括:Maquoketa Group,Trenton,Platteville,Joachim,Joachim,Joachim,Joachim,Joachim,Joachim,St Peter Sandstone,Everton Dolomite,Everton Dolomite,Everton Sandstone和Shakopee and Shakopee
摘要:立陶宛有一个地热异常,位于该国西南地区。此异常由位于立陶宛西部的两个主要地热复合物组成。第一个复合物的特征是pärnu -kemeri泥盆纪砂岩含水层,其表现出异常良好的流动性能。然而,该复合物中的储层温度最高可达45°C。第二络合物包括寒武纪砂岩储层。尽管这些寒武纪砂岩储层表现出高温,储层温度最高,达到96℃,但这些寒武纪砂岩储层的质量较低。这项研究重点介绍了高温寒武纪地热砂岩储层。该研究旨在对具有较高水生产率的现有碳氢化合物储层进行地质筛查。初始数据收集后,在机械框模型的帮助下采用数值建模来评估所选地点的地热潜力以进行商业开发。最终,该研究确定了前五名的站点,可以进一步为技术经济建模开发。
Norseman 的系统包括一个 758kW 太阳能发电场和 336kWh BESS,与 Cue、Sandstone、Yalgoo、Meekatharra 和 Wiluna 系统一起,预计将大幅减少柴油使用量,每年抵消约 2,100 吨碳排放。这六个可再生资产归 Horizon Power 所有,由 Pacific Energy 运营和维护。